寧夏中衛(wèi)市一中2022-2023學年高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
寧夏中衛(wèi)市一中2022-2023學年高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
寧夏中衛(wèi)市一中2022-2023學年高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
寧夏中衛(wèi)市一中2022-2023學年高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
寧夏中衛(wèi)市一中2022-2023學年高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.與終邊相同的角的集合是A. B.C. D.2.已知函數(shù)則的值為()A. B.C.0 D.13.已知函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是()A. B.C. D.4.已知函數(shù)的定義域為,集合,若中的最小元素為2,則實數(shù)的取值范圍是:A. B.C. D.5.已知正實數(shù)滿足,則最小值為A. B.C. D.6.已知圓C與直線及都相切,圓心在直線上,則圓C的方程為()A. B.C. D.7.設a=,b=,c=,則a,b,c的大小關(guān)系是()A. B.C. D.8.設全集,集合,,則等于A. B.{4}C.{2,4} D.{2,4,6}9.我們知道,函數(shù)的圖象關(guān)于坐標原點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),則函數(shù)圖象的對稱中心為()A. B.C. D.10.全集U={1,2,3,4,5,6},M={x|x≤4},則M等于()A.{1,3} B.{5,6}C.{1,5} D.{4,5}11.若一個扇形的半徑為2,圓心角為,則該扇形的弧長等于()A. B.C. D.12.若函數(shù)f(x)=sin(2x+φ)為R上的偶函數(shù),則φ的值可以是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)f(x)=若函數(shù)g(x)=f(x)-m有3個零點,則實數(shù)m的取值范圍是_________.14.設函數(shù),若關(guān)于x的方程有且僅有6個不同的實根.則實數(shù)a的取值范圍是_______.15.能說明命題“如果函數(shù)與的對應關(guān)系和值域都相同,那么函數(shù)和是同一函數(shù)”為假命題的一組函數(shù)可以是________________,________________16.已知且,則=______________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù),()的最小周期為.(1)求的值及函數(shù)在上的單調(diào)遞減區(qū)間;(2)若函數(shù)在上取得最小值時對應的角度為,求半徑為3,圓心角為的扇形的面積.18.已知函數(shù).(1)求函數(shù)的定義域;(2)設,若函數(shù)在上有且僅有一個零點,求實數(shù)的取值范圍;(3)設,是否存在正實數(shù),使得函數(shù)在內(nèi)的最大值為4?若存在,求出的值;若不存在,請說明理由.19.已知函數(shù)的部分圖像如圖所示(1)求函數(shù)f(x)的解析式,并寫出其單調(diào)遞增區(qū)間;(2)在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若,且a、b是方程的兩個實數(shù)根,試求△ABC的周長及其外接圓的面積20.如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,CA=CB,點D,E分別為AB,AC的中點.求證:(1)DE∥平面PBC;(2)CD⊥平面PAB21.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;(2)若在區(qū)間上存在唯一的最小值為-2,求實數(shù)m的取值范圍22.如圖,在扇形OAB中,半徑OA=1,圓心角C是扇形弧上的動點,矩形CDEF內(nèi)接于扇形,且OE=OF.記∠AOC=θ,求當角θ為何值時,矩形CDEF的面積S最大?并求出這個最大的面積.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】根據(jù)終邊相同的角定義的寫法,直接寫出與角α終邊相同的角,得到結(jié)果【詳解】根據(jù)角的終邊相同的定義的寫法,若α=,則與角α終邊相同的角可以表示為k?360°(k∈Z),即(k∈Z)故選D【點睛】本題考查與角α的終邊相同的角的集合的表示方法,屬于基礎題.2、D【解析】根據(jù)分段函數(shù)解析式及指數(shù)對數(shù)的運算法則計算可得;【詳解】解:因為,所以,所以,故選:D3、A【解析】根據(jù)二次函數(shù)的單調(diào)區(qū)間及增減性,可得到,求解即可.【詳解】函數(shù),開口向下,對稱軸為函數(shù)在區(qū)間上是增函數(shù),所以,解得,所以實數(shù)a的取值范圍是.故選:A4、C【解析】本題首先可以求出集合以及集合中所包含的元素,然后通過交集的相關(guān)性質(zhì)以及中的最小元素為2即可列出不等式組,最后求出實數(shù)的取值范圍【詳解】函數(shù),,或者,所以集合,,,,所以集合,因為中的最小元素為2,所以,解得,故選C【點睛】本題考查了集合的相關(guān)性質(zhì),主要考查了交集的相關(guān)性質(zhì)、函數(shù)的定義域、帶絕對值的不等式的求法,考查了推理能力與計算能力,考查了化歸與轉(zhuǎn)化思想,提升了學生的邏輯思維,是中檔題5、A【解析】由題設條件得,,利用基本不等式求出最值【詳解】由已知,,所以當且僅當時等號成立,又,所以時取最小值故選A【點睛】本題考查據(jù)題設條件構(gòu)造可以利用基本不等式的形式,利用基本不等式求最值6、D【解析】根據(jù)圓心在直線上,設圓心坐標為,然后根據(jù)圓C與直線及都相切,由求解.【詳解】因為圓心在直線上,設圓心坐標為,因為圓C與直線及都相切,所以,解得,∴圓心坐標為,又,∴,∴圓的方程為,故選:D.7、C【解析】根據(jù)指數(shù)和冪函數(shù)的單調(diào)性比較大小即可.【詳解】因為在上單調(diào)遞增,在上單調(diào)遞減所以,故.故選:C8、C【解析】由并集與補集的概念運算【詳解】故選:C9、A【解析】根據(jù)題意并結(jié)合奇函數(shù)的性質(zhì)即可求解.【詳解】由題意得,設函數(shù)圖象的對稱中心為,則函數(shù)為奇函數(shù),即,則,解得,故函數(shù)圖象的對稱中心為.故選:.10、B【解析】M即集合U中滿足大于4的元素組成的集合.【詳解】由全集U={1,2,3,4,5,6},M={x|x≤4}則M={5,6}.故選:B【點睛】本題考查求集合的補集,屬于基礎題.11、B【解析】求圓心角的弧度數(shù),再由弧長公式求弧長.【詳解】∵圓心角為,∴圓心角的弧度數(shù)為,又扇形的半徑為2,∴該扇形的弧長,故選:B.12、C【解析】根據(jù)三角函數(shù)的奇偶性,即可得出φ的值【詳解】函數(shù)f(x)=sin(2x+φ)為R上的偶函數(shù),則φ=+kπ,k∈Z;所以φ的值可以是.故選C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的應用問題,屬于基礎題二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、(0,1)【解析】將方程的零點問題轉(zhuǎn)化成函數(shù)的交點問題,作出函數(shù)的圖象得到m的范圍【詳解】令g(x)=f(x)﹣m=0,得m=f(x)作出y=f(x)與y=m的圖象,要使函數(shù)g(x)=f(x)﹣m有3個零點,則y=f(x)與y=m的圖象有3個不同的交點,所以0<m<1,故答案為(0,1)【點睛】本題考查等價轉(zhuǎn)化的能力、利用數(shù)形結(jié)合思想解題的思想方法是重點,要重視14、或或【解析】作出函數(shù)的圖象,設,分關(guān)于有兩個不同的實數(shù)根、,和兩相等實數(shù)根進行討論,當方程有兩個相等的實數(shù)根時,再檢驗,當方程有兩個不同的實數(shù)根、時,或,再由二次方程實數(shù)根的分布進行討論求解即可.【詳解】作出函數(shù)的簡圖如圖,令,要使關(guān)于的方程有且僅有個不同的實根,(1)當方程有兩個相等的實數(shù)根時,由,即,此時當,此時,此時由圖可知方程有4個實數(shù)根,此時不滿足.當,此時,此時由圖可知方程有6個實數(shù)根,此時滿足條件.(2)當方程有兩個不同的實數(shù)根、時,則或當時,由可得則的根為由圖可知當時,方程有2個實數(shù)根當時,方程有4個實數(shù)根,此時滿足條件.當時,設由,則,即綜上所述:滿足條件的實數(shù)a的取值范圍是或或故答案為:或或【點睛】關(guān)鍵點睛:本題考查利用復合型二次函數(shù)的零點個數(shù)求參數(shù),考查數(shù)形結(jié)合思想的應用,解答本題的關(guān)鍵由條件結(jié)合函數(shù)的圖象,分析方程的根情況及其范圍,再由二次方程實數(shù)根的分布解決問題,屬于難題.15、①.②.(答案不唯一);【解析】根據(jù)所學函數(shù),取特例即可.【詳解】根據(jù)所學過過的函數(shù),可取,,函數(shù)的對應法則相同,值域都為,但函數(shù)定義域不同,是不同的函數(shù),故命題為假.故答案為:;16、3【解析】先換元求得函數(shù),然后然后代入即可求解.【詳解】且,令,則,即,解得,故答案為:3.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1),減區(qū)間為(2)【解析】(1)根據(jù)最小正周期求得,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得在上的單調(diào)遞減區(qū)間.(2)根據(jù)三角函數(shù)最值的求法求得,根據(jù)扇形面積公式求得扇形的面積.【小問1詳解】由于函數(shù),()的最小周期為,所以,.,由得,所以的減區(qū)間為.【小問2詳解】,當時取得最小值,所以,對應扇形面積為18、(1);(2);(3)存在,.【解析】(1)根據(jù)對數(shù)函數(shù)的定義域列不等式求解即可.(2)由函數(shù)的單調(diào)性和零點存在定理,列不等式求解即可.(3)由對勾函數(shù)的性質(zhì)可得函數(shù)的單調(diào)區(qū)間,利用分類討論的思想討論定義域與單調(diào)區(qū)間的關(guān)系,再利用函數(shù)的最值存在性問題求出實數(shù)的值.【詳解】(1)由題意,函數(shù)有意義,則滿足,解得,即函數(shù)的定義域為.(2)由,且,可得,且為單調(diào)遞增連續(xù)函數(shù),又函數(shù)在上有且僅有一個零點,所以,即,解得,所以實數(shù)的取值范圍是.(3)由,設,則,易證在為單調(diào)減函數(shù),在為單調(diào)增函數(shù),當時,函數(shù)在上為增函數(shù),所以最大值為,解得,不符合題意,舍去;當時,函數(shù)在上為減函數(shù),所以最大值為,解得,不符合題意,舍去;當時,函數(shù)在上減函數(shù),在上為增函數(shù),所以最大值為或,解得,符合題意,綜上可得,存在使得函數(shù)的最大值為4.【點睛】本題考查了對數(shù)函數(shù)的定義域問題、零點存在定理、對勾函數(shù)的應用,考查了理解辨析的能力、數(shù)學運算能力、分類討論思想和轉(zhuǎn)化的數(shù)學思想,屬于一般題目.19、(1),(2),【解析】(1)根據(jù)圖像可得及函數(shù)的周期,從而求得,然后利用待定系數(shù)法即可求得,再根據(jù)正弦函數(shù)的單調(diào)性結(jié)合整體思想即可求出函數(shù)的增區(qū)間;(2)根據(jù)可求得角,利用韋達定理可得,再利用余弦定理可求得邊,再利用正弦定理可得外接圓的半徑,即可得出答案.【小問1詳解】解:由函數(shù)圖象知,又由函數(shù)圖象知,所以,得,∴,因為圖象過點(0,1),所以,所以,又因為,所以,所以函數(shù)f(x)的解析式為,令,則,所以單調(diào)遞增區(qū)間為:;【小問2詳解】,結(jié)合,則,所以,又由題設,得,所以,所以,∴三角形ABC的周長,∵外接圓的直徑,∴,∴外接圓的面積.20、(1)證明見解析;(2)證明見解析.【解析】(1)由點D、E分別為AB、AC中點得知DE∥BC,由此證得DE∥平面PBC;(2)要證CD⊥平面PAB,只需證明垂直平面內(nèi)的兩條相交直線與即可.【詳解】(1)因為點D、E分別為AB、AC中點,所以DE∥BC又因為DE?平面PBC,BC?平面PBC,所以DE∥平面PBC(2)因為CA=CB,點D為AB中點,所以CD⊥AB因為PA⊥平面ABC,CD?平面ABC,所以PA⊥CD又因為PA∩AB=A,所以CD⊥平面PAB【點睛】本題考查線面平行的證明,線面垂直的證明,屬于基礎題.垂直、平行關(guān)系證明中應用轉(zhuǎn)化與化歸思想的常見類型(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.21、(1),(2)【解析】(1)用誘導公式將函數(shù)化為,然后可解;(2)根據(jù)m介于第一個最小值點和第二個最小值點之間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論