版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
TotalReviewofComputer-aidedDesignandManufacturing
TotalReviewofComputer-aided1ScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises3times(5markseachtime)Termpaper(25%)Examination
(50%)2-houropenbookpaper(CAD90%plusCAM10%),CalculationproblemsandnounsexplainScoreAssessmentAttendance(102ExaminationMaterial
LecturenotesTutorialsandexercisesTeachingMaterial
(MECHANICALENGINEERINGCAD/CAM)
ReferencesbooksSurfacemodellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.
TheCNCWorkshop(ver2),chapter1ExaminationMaterialLecturen3Chapter1:InstructionWhatisCAD/CAM/CAE/CAPP?
Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypicalapplications?Chapter1:InstructionWhatis4Chapter2:CurvesFourcurvemodelsStandardpolynomial
curve
Ferguson
curve
Bezier
curve
B-spline
curveCurvefittingChapter2:CurvesFourcurvemo5PolynomialCurveModelsCurveSegmentDefinition:
Acubicpolynomialcurvemodel:
r
(u)=a
+bu
+cu2
+
du3
usedinrepresentingacurvesegmentisspecifiedbyits
endconditions,
e.g.,
(a)
4points
(P0,
P1,P2
and
P3)
or
(b) twoendpoints
P0
and
P1;
twoendtangents
t0
and
t1.P0P1P2P3Ingeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.
PolynomialCurveModelsCurveS6FergusonCurveModel
Constructingacurvesegment:JoiningtwoendpointsP0andP1;
Havingspecifiedendtangentst0andt1
i.e.,
P0=r(0); P1
=r(1);
t0=r’(0); t1=r’(1)
P1P0t1t0r(u)r(u)=UA=UMV
with0
u
1FergusonCurveModelConstruct7BezierCurveModel
with0
u
1
OnevaluatingtheBezierequationanditsderivativeatu=0,1
r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)
Bezierfoundafamilyoffunctionscalled
BernsteinPolynomials
thatsatisfytheseconditions:BezierCurveModelwith08BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r(u)=(1–u)3
V0+3u(1–u)2
V1+3u2(1–u)V2+u3
V3
r(u)=
=UMR
r(0)=V0 r’(0)=3
(V1–V0)r(1)=V3
r’(1)=3
(V3–V2)
Theshapeofthecurveresemblesthatofthecontrolpolygon.BezierCurveModelCubic(n=39B-splineModel
with0
u
1
Ni,n(u)
=
TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-splineModelwith0u10B-splineModelQuadratic
uniformB-splinemodelwithcontrolpointsV0,V1,andV2
r(t)=
?
[t2
t1]
=U3
M3
P3
0≤t≤1
CubicuniformB-splinemodelwithcontrolpointsV0,V1,V2,andV3
r(t)=1/6
[u3
u2
u1]
=U4
M4
P4
0≤t≤1B-splineModelQuadraticunifor11ParametricContinuityCondition
Twocurvesegmentsra(u)andrb(u)
ra(1)=P1=rb(0)
(C0-continuous)
ra’(1)=t1=rb’(0)
(C1-continuous)
ra’’(1)=rb’’(0)
(C2-continuous)
Collectivelycalleda
parametricC2-condition.
Thecompositecurvetopassthrough
P0,P1,P2,andthetangentst0andt2areassumedtobe
given.Thus,theproblemhereistodeterminethe
unknownt1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)ParametricContinuityConditio12CubicSplineFitting(FergusonModel)
EmployingFergusoncurvemodel
ra(u)=UCSa
rb(u)=UCSb
with0u1
U=[u3
u2
u1]C=
Sa
=
[P0P1t0t1]T
Sb
=
[P1P2t1t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=
-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalreadyappliedCubicSplineFitting(Ferguson13CubicSplineFitting(FergusonModel)ApplyingparametricC2-condition
t0+4t1+t2=3(P2–P0)
Now,considerconstructingaC2-continuouscurvepassingthroughasequenceof
n+1
(P0
toPn)
pointsEndtangents
t0
and
tn
aregiven,inadditiontothe
(n+1)
points{Pi
}.
(Howmanycurvesegments???)
Therearetotally
n
curvesegments.Foreachpairofneighbouringcurvesegments
ri-1(u)
and
ri(u),wehave
ti-1+4ti+ti+1=3(Pi+1–Pi-1)
fori=1,2,…,n–1
CubicSplineFitting(Ferguson14B-splineModelOnevaluatingthecubicB-spline(k=4) anditsderivativeatt=1,0,
r
(0)=[4V1+(V0+V2)]/6 r(1)=[4V2+(V1+V3)]/6
r’(0)=(V2–V0)/2 r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bothtypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBeziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V2B-splineModelOnevaluatingth15CubicSplineFittingEstimationofendtangents,t0andtnCircularendcondition
Polynomialendcondition
Freeendcondition
CubicSplineFittingEstimation16Chapter3:SurfacesFoursurfacepatchmodelsStandardpolynomial
surfacepatch
Ferguson
surfacepatch
Bezier
surfacepatch
B-spline
surfacepatch
ThreeSurfaceConstructionMethodsTheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethodCurvedBoundaryInterpolatingSurfacePatchesChapter3:SurfacesFoursurfac17StandardPolynomialPatchModel
Consideravector-valuedpolynomialfunction
r(u,v)whosedegreesarecubicinbothuandvwithcoefficients
dijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedas
r(u,v)
=
with0
u,v
1
whichcanbeexpressedinamatrixformas
r(u,v)
=
UDVT
where,
U=[u3
u2
u1],V=[v3
v2
v1],
andthe
coefficientsmatrix
D=
StandardPolynomialPatchMode18FergusonSurfacePatchModelSolvingthe16linearequationsfortheunknowncoefficientsdij
givesusaFergusonpatchequation:
r(u,v)=UDVT=UCQCTVT for0
u,v
1
C=
Q=FergusonSurfacePatchModelSo19BezierSurfacePatchModel
r(u,v)==UMBMTVT
0
u,v
1
Where
M=
B=
ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andB
iscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchModelr(20BezierSurfacePatchModelBezierpatchvs.FergusonPatch
ByevaluatingthecornerconditionsoftheBezierpatch, wehavethefollowingrelationships:
Atu=0,v=0,
r(0,0)=V00 s00=3(V10–V00) t00=3(V01–V00) x00=9(V00–V01
–V10+V11)BezierSurfacePatchModelBezi21B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.
r(u,v)=
=UNBNTVT
for0
u,v
1
N=
B-splineSurfacePatchModelCo22SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformacompositesurface.Threemethodstobeintroduced:TheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethod
SurfaceConstructionMethodsIt23B-SplineSurfaceFittingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?B-SplineSurfaceFittingCompar24CurvedBoundaryInterpolatingSurfacePatches
Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:Ruledsurfaces
Loftedsurfaces
Coonssurfaces
Twotypesofsweepsurfacepatches:Translationalsweeppatches
RotationalsweeppatchesCurvedBoundaryInterpolating25RuledSurfaces
Considertwoparametriccurves,
r0(u)andr1(u)with0
u
1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurface
r
(u,
v)=r0(u)+v
(r1(u)-r0(u));0
u,v
1Avectorinthedirectionofr1(u)-r0(u)iscalledarulingvector
t(u).
RuledSurfacesConsidertwop26TranslationalSweepSurfacePatches
InputSummaryTwoparametricspacecurves,g(u)andd(v).
Atranslationalsweepsurfaceisdefinedbythe trajectoryofthecurveg(u)
sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledagenerator
curveTheguidingcurved(v)iscalledadirector
curve
r(u,v)=g(u)+d(v)-d(0)0
u,v
1
r(u,v)g(u)TranslationalSweepSurfacePa27RotationalSweepSurfacePatches
Alsoknownas
surfaceofrevolution
Considerasectioncurves(u)onthex-zplane
s(u)=x(u)i+z(u)k=
(x(u),0,z(u))
Rotatethesectioncurves(u)aboutthez-axis,theresultingsweepsurfacecanbeexpressedasanparametricequationas:
r(u,)=(x(u)cos,x(u)sin,z(u))
r(u,)RotationalSweepSurfacePatch28Chapter4:SolidModellingTwosolidmodelrepresentationschemesGraph-basedmodel(B-reps)Booleanmodel(CSG)EulerFormulaChapter4:SolidModellingTwo29Graph-BasedModelsForsolidsrepresentedasplanar-facedpolyhedron,manysimplerepresentationschemesareavailable,e.g.,connectivitymatrixforpolyhedron.Connectivitymatrix(oradjacencymatrix):Abinarymatrix
0-elementindicatesnoconnectivityexists
1-elementsindicateconnectivityexistsbetweenthepairofelements (vertices,edges,orfaces).
Graph-BasedModelsForsolidsr30BooleanModelsThebinarytreeforthismodelTheleafnodesaretheprimitivesolids,withBooleanoperatorsateachinternalnodeandtheroot.Eachinternalnodecombinesthetwoobjectsimmediatelybelowitinthetree,and,ifnecessary,transformstheresultinreadinessforthenextoperation.
BooleanModelsThebinarytree31BasicConceptsofSolidModelEuler’slaw(orEuler’sformula)Foravalidsolid(polyhedron),thefollowingrelationshipmustbesatisfied:
V–E+F-(L–F)=2–2H
V=NumberofverticesE=NumberofedgesF=NumberoffacesL=NumberofedgeloopsH=Numberofthroughholes
Thisexpressioncanalsobere-writtenas:
V–E+F-
R=2–2H
WhereR=L–Fisthenumberofinterioredgeloops.
ExternaledgeloopInterioredgeloopBasicConceptsofSolidModelE32Chapter7:PartProgrammingandManufacturingWhatisCNC/NC?
Howabouttheircharacteristics?)WhatisCNC/MC/FMS/CIMS?
Howistherelationshipamongthem?)WhatisthebasicconstructionforNCprogramming?HowtodeterminethecocrdinatesystemsofNCmachinetools?WhatisRP/RE?
Howabouttheircharacteristics?)Chapter7:PartProgrammingan33TipYoushouldpreparesufficientmaterials.Youshouldbringyourscientificcalculator,notyouriPhone.Youmayneedaruler.
Alloftheseformthescopeoftestinthefinalexam.TipYoushouldpreparesufficie34ThefinaltipPractice,practice,andpractice…Thefinaltip35ThankyouWishyouforthebestgrades!Thankyou36TotalReviewofComputer-aidedDesignandManufacturing
TotalReviewofComputer-aided37ScoreAssessmentAttendance(10%)Rollcall5times(2markseachtime)courseerercises(15%)Courseexercises3times(5markseachtime)Termpaper(25%)Examination
(50%)2-houropenbookpaper(CAD90%plusCAM10%),CalculationproblemsandnounsexplainScoreAssessmentAttendance(1038ExaminationMaterial
LecturenotesTutorialsandexercisesTeachingMaterial
(MECHANICALENGINEERINGCAD/CAM)
ReferencesbooksSurfacemodellingforCAD/CAM,Chapter1-5,7Geometricmodelling,chapter9-10.
TheCNCWorkshop(ver2),chapter1ExaminationMaterialLecturen39Chapter1:InstructionWhatisCAD/CAM/CAE/CAPP?
Howistherelationshipamongthem?)WhatistheHISTORYofCAD/CAM?HardwareandsoftwareofCAD/CAMsystem?WhatisGeometricModellinganditstypicalapplications?Chapter1:InstructionWhatis40Chapter2:CurvesFourcurvemodelsStandardpolynomial
curve
Ferguson
curve
Bezier
curve
B-spline
curveCurvefittingChapter2:CurvesFourcurvemo41PolynomialCurveModelsCurveSegmentDefinition:
Acubicpolynomialcurvemodel:
r
(u)=a
+bu
+cu2
+
du3
usedinrepresentingacurvesegmentisspecifiedbyits
endconditions,
e.g.,
(a)
4points
(P0,
P1,P2
and
P3)
or
(b) twoendpoints
P0
and
P1;
twoendtangents
t0
and
t1.P0P1P2P3Ingeneral,adegree-npolynomialcurvecanbeusedtofit(n+1)datapoints.
PolynomialCurveModelsCurveS42FergusonCurveModel
Constructingacurvesegment:JoiningtwoendpointsP0andP1;
Havingspecifiedendtangentst0andt1
i.e.,
P0=r(0); P1
=r(1);
t0=r’(0); t1=r’(1)
P1P0t1t0r(u)r(u)=UA=UMV
with0
u
1FergusonCurveModelConstruct43BezierCurveModel
with0
u
1
OnevaluatingtheBezierequationanditsderivativeatu=0,1
r(0)=V0r(1)=Vnr’(0)=n(V1–V0)r’(1)=n(Vn–Vn-1)
Bezierfoundafamilyoffunctionscalled
BernsteinPolynomials
thatsatisfytheseconditions:BezierCurveModelwith044BezierCurveModelCubic(n=3)BeziercurvemodelV0V1V2V3V3V2V1V0V2V1V0V3r(u)=(1–u)3
V0+3u(1–u)2
V1+3u2(1–u)V2+u3
V3
r(u)=
=UMR
r(0)=V0 r’(0)=3
(V1–V0)r(1)=V3
r’(1)=3
(V3–V2)
Theshapeofthecurveresemblesthatofthecontrolpolygon.BezierCurveModelCubic(n=345B-splineModel
with0
u
1
Ni,n(u)
=
TheprimaryfunctionB-splineModeldefinedbyn+1pointsViisgivenbytheWhereB-splineModelwith0u46B-splineModelQuadratic
uniformB-splinemodelwithcontrolpointsV0,V1,andV2
r(t)=
?
[t2
t1]
=U3
M3
P3
0≤t≤1
CubicuniformB-splinemodelwithcontrolpointsV0,V1,V2,andV3
r(t)=1/6
[u3
u2
u1]
=U4
M4
P4
0≤t≤1B-splineModelQuadraticunifor47ParametricContinuityCondition
Twocurvesegmentsra(u)andrb(u)
ra(1)=P1=rb(0)
(C0-continuous)
ra’(1)=t1=rb’(0)
(C1-continuous)
ra’’(1)=rb’’(0)
(C2-continuous)
Collectivelycalleda
parametricC2-condition.
Thecompositecurvetopassthrough
P0,P1,P2,andthetangentst0andt2areassumedtobe
given.Thus,theproblemhereistodeterminethe
unknownt1sothatthetwocurvesegmentsareC2-continuousatthecommonjoinP1.P0P1P2t2t0t1=?ra(u)rb(u)ParametricContinuityConditio48CubicSplineFitting(FergusonModel)
EmployingFergusoncurvemodel
ra(u)=UCSa
rb(u)=UCSb
with0u1
U=[u3
u2
u1]C=
Sa
=
[P0P1t0t1]T
Sb
=
[P1P2t1t2]TApplyingC2continuity:ra’’(1)=6P0–6P1+2t0+4t1rb’’(0)=
-6P1+6P2-4t1-2t2C0-continuityandC1-continuityalreadyappliedCubicSplineFitting(Ferguson49CubicSplineFitting(FergusonModel)ApplyingparametricC2-condition
t0+4t1+t2=3(P2–P0)
Now,considerconstructingaC2-continuouscurvepassingthroughasequenceof
n+1
(P0
toPn)
pointsEndtangents
t0
and
tn
aregiven,inadditiontothe
(n+1)
points{Pi
}.
(Howmanycurvesegments???)
Therearetotally
n
curvesegments.Foreachpairofneighbouringcurvesegments
ri-1(u)
and
ri(u),wehave
ti-1+4ti+ti+1=3(Pi+1–Pi-1)
fori=1,2,…,n–1
CubicSplineFitting(Ferguson50B-splineModelOnevaluatingthecubicB-spline(k=4) anditsderivativeatt=1,0,
r
(0)=[4V1+(V0+V2)]/6 r(1)=[4V2+(V1+V3)]/6
r’(0)=(V2–V0)/2 r’(1)=(V3–V1)/2B-splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable,naturalway,makingthemgoodcandidatesforuseinaninteractivedesignenvironment.Bothtypesofcurveareaxisindependent,multivalued,andbothexhibittheconvexhullproperty.B-splinecurveshaveadvantagesoverBeziercurves:Localcontrolofcurveshape.Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve.V0V1V3V2B-splineModelOnevaluatingth51CubicSplineFittingEstimationofendtangents,t0andtnCircularendcondition
Polynomialendcondition
Freeendcondition
CubicSplineFittingEstimation52Chapter3:SurfacesFoursurfacepatchmodelsStandardpolynomial
surfacepatch
Ferguson
surfacepatch
Bezier
surfacepatch
B-spline
surfacepatch
ThreeSurfaceConstructionMethodsTheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethodCurvedBoundaryInterpolatingSurfacePatchesChapter3:SurfacesFoursurfac53StandardPolynomialPatchModel
Consideravector-valuedpolynomialfunction
r(u,v)whosedegreesarecubicinbothuandvwithcoefficients
dijfor(ui,vj).Thatisabi-cubic(standard)polynomialpatchdefinedas
r(u,v)
=
with0
u,v
1
whichcanbeexpressedinamatrixformas
r(u,v)
=
UDVT
where,
U=[u3
u2
u1],V=[v3
v2
v1],
andthe
coefficientsmatrix
D=
StandardPolynomialPatchMode54FergusonSurfacePatchModelSolvingthe16linearequationsfortheunknowncoefficientsdij
givesusaFergusonpatchequation:
r(u,v)=UDVT=UCQCTVT for0
u,v
1
C=
Q=FergusonSurfacePatchModelSo55BezierSurfacePatchModel
r(u,v)==UMBMTVT
0
u,v
1
Where
M=
B=
ThematrixMiscalleda(cubic)Beziercoefficientmatrix,andB
iscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron.BezierSurfacePatchModelr(56BezierSurfacePatchModelBezierpatchvs.FergusonPatch
ByevaluatingthecornerconditionsoftheBezierpatch, wehavethefollowingrelationships:
Atu=0,v=0,
r(0,0)=V00 s00=3(V10–V00) t00=3(V01–V00) x00=9(V00–V01
–V10+V11)BezierSurfacePatchModelBezi57B-splineSurfacePatchModelConsidera44arrayofcontrolvertices{Vij}.
r(u,v)=
=UNBNTVT
for0
u,v
1
N=
B-splineSurfacePatchModelCo58SurfaceConstructionMethodsItisdesiredtouselowdegree(usuallycubic)polynomialpatchmodeltoformacompositesurface.Threemethodstobeintroduced:TheFMILLmethod
Fergusonfittingmethod
B-splinefittingmethod
SurfaceConstructionMethodsIt59B-SplineSurfaceFittingComparisonbetweenFergusonfittingandB-splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges,localchangeforB-splinesurface,globalchangeforFergusonsurface.Question:Whenonecontrolpointischanged,howmanypatchesareaffected?B-SplineSurfaceFittingCompar60CurvedBoundaryInterpolatingSurfacePatches
Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves:Ruledsurfaces
Loftedsurfaces
Coonssurfaces
Twotypesofsweepsurfacepatches:Translationalsweeppatches
RotationalsweeppatchesCurvedBoundaryInterpolating61RuledSurfaces
Considertwoparametriccurves,
r0(u)andr1(u)with0
u
1(seefigure).Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurface
r
(u,
v)=r0(u)+v
(r1(u)-r0(u));0
u,v
1Avectorinthedirectionofr1(u)-r0(u)iscalledarulingvector
t(u).
RuledSurfacesConsidertwop62TranslationalSweepSurfacePatches
InputSummaryTwoparametricspacecurves,g(u)andd(v).
Atranslationalsweepsurfaceisdefinedbythe trajectoryofthecurveg(u)
sweptalongthesecondcurved(v).Themovingcurveg(u)iscalledagenerator
curveTheguidingcurved(v)iscalledadirector
curve
r(u,v)=g(u)+d(v)-d(0)0
u,v
1
r(u,v)g(u)TranslationalSweepSurfacePa63RotationalSweepSurfacePatches
Alsoknownas
sur
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年植草磚研發(fā)與試驗合同3篇
- 二零二五年度辣椒苗繁育基地辣椒苗供應(yīng)及種植培訓(xùn)協(xié)議5篇
- 2024貿(mào)易相關(guān)知識產(chǎn)權(quán)轉(zhuǎn)讓與許可服務(wù)合同3篇
- 二零二五年度房地產(chǎn)項目裝修施工合同頁52篇
- 二零二五年度貸款居間業(yè)務(wù)合作協(xié)議范本匯編3篇
- 2024股權(quán)認購書范本
- 二零二五年度網(wǎng)絡(luò)文學(xué)作品改編及版權(quán)授權(quán)合同3篇
- 二零二五年度綠色搬家環(huán)保協(xié)議2篇
- 2025年智慧餐飲供應(yīng)鏈配送合同協(xié)議3篇
- 2025年度離婚協(xié)議書起草與審核實務(wù)手冊3篇
- (新版)高級考評員職業(yè)技能鑒定考試題庫(含答案)
- 碳排放監(jiān)測員(高級)技能鑒定考試題及答案
- 2024年中醫(yī)執(zhí)業(yè)醫(yī)師資格考試題庫及答案
- 柯橋區(qū)五年級上學(xué)期語文期末學(xué)業(yè)評價測試試卷
- 2022年廣東省中考物理試題試題(含答案+解析)
- 北京市豐臺區(qū)2024屆高三下學(xué)期二模試題 數(shù)學(xué) 含解析
- 質(zhì)量保證措施
- 耕地占補平衡系統(tǒng)課件
- 2024年三年級品社下冊《鄰居家的小伙伴》教案2 蘇教版
- 交易平臺保證金協(xié)議書
- 醫(yī)院OA辦公系統(tǒng)技術(shù)需求
評論
0/150
提交評論