江蘇省江都區(qū)曹王2021-2022學(xué)年中考數(shù)學(xué)全真模擬試題含解析及點(diǎn)睛_第1頁
江蘇省江都區(qū)曹王2021-2022學(xué)年中考數(shù)學(xué)全真模擬試題含解析及點(diǎn)睛_第2頁
江蘇省江都區(qū)曹王2021-2022學(xué)年中考數(shù)學(xué)全真模擬試題含解析及點(diǎn)睛_第3頁
江蘇省江都區(qū)曹王2021-2022學(xué)年中考數(shù)學(xué)全真模擬試題含解析及點(diǎn)睛_第4頁
江蘇省江都區(qū)曹王2021-2022學(xué)年中考數(shù)學(xué)全真模擬試題含解析及點(diǎn)睛_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某排球隊(duì)名場(chǎng)上隊(duì)員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊(duì)員換下場(chǎng)上身高為的隊(duì)員,與換人前相比,場(chǎng)上隊(duì)員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大2.如圖,雙曲線y=(k>0)經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.63.下列四張印有汽車品牌標(biāo)志圖案的卡片中,是中心對(duì)稱圖形的卡片是()A. B. C. D.4.如圖,點(diǎn)C是直線AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°5.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.136.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點(diǎn).若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π7.在實(shí)數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣48.小張同學(xué)制作了四張材質(zhì)和外觀完全一樣的書簽,每個(gè)書簽上寫著一本書的名稱或一個(gè)作者姓名,分別是:《西游記》、施耐庵、《安徒生童話》、安徒生,從這四張書簽中隨機(jī)抽取兩張,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是()A. B. C. D.9.如圖,、是的切線,點(diǎn)在上運(yùn)動(dòng),且不與,重合,是直徑.,當(dāng)時(shí),的度數(shù)是()A. B. C. D.10.如圖,是半圓的直徑,點(diǎn)、是半圓的三等分點(diǎn),弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,直線m∥n,△ABC為等腰直角三角形,∠BAC=90°,則∠1=度.12.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長(zhǎng)線分別交AD于點(diǎn)E、F,連接BD、DP,BD與CF相交于點(diǎn)H,給出下列結(jié)論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號(hào))13.如圖,正方形ABCD邊長(zhǎng)為3,連接AC,AE平分∠CAD,交BC的延長(zhǎng)線于點(diǎn)E,F(xiàn)A⊥AE,交CB延長(zhǎng)線于點(diǎn)F,則EF的長(zhǎng)為__________.14.不等式5x﹣3<3x+5的非負(fù)整數(shù)解是_____.15.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動(dòng)到點(diǎn)A,圖2是點(diǎn)P運(yùn)動(dòng)時(shí),線段BP的長(zhǎng)度y隨時(shí)間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是___.16.用正三角形、正四邊形和正六邊形按如圖所示的規(guī)律拼圖案,即從第二個(gè)圖案開始,每個(gè)圖案中正三角形的個(gè)數(shù)都比上一個(gè)圖案中正三角形的個(gè)數(shù)多4個(gè),則第n個(gè)圖案中正三角形的個(gè)數(shù)為(用含n的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)D作AB的垂線交AC于E,過點(diǎn)C作∠ECP=∠AED,CP交DE的延長(zhǎng)線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長(zhǎng).18.(8分)平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1═(x>0)的圖象上,點(diǎn)A′與點(diǎn)A關(guān)于點(diǎn)O對(duì)稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點(diǎn)A′.(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達(dá)式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,△AA'B的面積為16,求k的值;(3)設(shè)m=,如圖②,過點(diǎn)A作AD⊥x軸,與函數(shù)y2的圖象相交于點(diǎn)D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點(diǎn)P一定在函數(shù)y1的圖象上.19.(8分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個(gè)單位長(zhǎng)度的速度向中點(diǎn)C運(yùn)動(dòng),過點(diǎn)P作PQ⊥AB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).(1)當(dāng)點(diǎn)R與點(diǎn)B重合時(shí),求t的值;(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動(dòng)時(shí),求線段PQ的長(zhǎng)(用含有t的代數(shù)式表示);(3)當(dāng)點(diǎn)R落在?ABCD的外部時(shí),求S與t的函數(shù)關(guān)系式;(4)直接寫出點(diǎn)P運(yùn)動(dòng)過程中,△PCD是等腰三角形時(shí)所有的t值.20.(8分)某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8元/千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(元/千克)之間的函數(shù)關(guān)系如圖所示.(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說明理由.21.(8分)先化簡(jiǎn),再求值:,其中,.22.(10分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點(diǎn)D在邊AB上.(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=1.求CG的長(zhǎng).23.(12分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點(diǎn),CF⊥AB于點(diǎn)F,CE⊥AD交AD的延長(zhǎng)線于點(diǎn)E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.24.如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計(jì)圖,如圖2為該網(wǎng)站本周學(xué)生日訪問量占日訪問總量的百分比統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息完成下列填空:這一周訪問該網(wǎng)站一共有萬人次;周日學(xué)生訪問該網(wǎng)站有萬人次;周六到周日學(xué)生訪問該網(wǎng)站的日平均增長(zhǎng)率為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】分析:根據(jù)平均數(shù)的計(jì)算公式進(jìn)行計(jì)算即可,根據(jù)方差公式先分別計(jì)算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊(duì)員身高的平均數(shù)為==188,方差為S2==;換人后6名隊(duì)員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點(diǎn)睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.2、B【解析】

先根據(jù)矩形的特點(diǎn)設(shè)出B、C的坐標(biāo),根據(jù)矩形的面積求出B點(diǎn)橫縱坐標(biāo)的積,由D為AB的中點(diǎn)求出D點(diǎn)的橫縱坐標(biāo),再由待定系數(shù)法即可求出反比例函數(shù)的解析式.【詳解】解:如圖:連接OE,設(shè)此反比例函數(shù)的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設(shè)D(x,y),∵D和E都在反比例函數(shù)圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點(diǎn)睛】本題考查了反比例函數(shù)中比例系數(shù)k的幾何意義,涉及到矩形的性質(zhì)及用待定系數(shù)法求反比例函數(shù)的解析式,難度適中.3、C【解析】試題分析:由中心對(duì)稱圖形的概念可知,這四個(gè)圖形中只有第三個(gè)是中心對(duì)稱圖形,故答案選C.考點(diǎn):中心對(duì)稱圖形的概念.4、B【解析】

延長(zhǎng)AC交DE于點(diǎn)F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長(zhǎng)AC交DE于點(diǎn)F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點(diǎn)睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯(cuò)角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.5、A【解析】

由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.6、A【解析】

根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計(jì)算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是扇形面積的計(jì)算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.7、C【解析】

根據(jù)實(shí)數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點(diǎn)睛】本題主要考查了實(shí)數(shù)的大小比較,解本題的要點(diǎn)在于統(tǒng)一根據(jù)二次根式的性質(zhì),把根號(hào)外的移到根號(hào)內(nèi),只需比較被開方數(shù)的大小.8、D【解析】

根據(jù)題意先畫出樹狀圖得出所有等情況數(shù)和到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等情況數(shù),抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的有2種情況,則抽到的書簽正好是相對(duì)應(yīng)的書名和作者姓名的概率是=;故選D.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【解析】

連接OB,由切線的性質(zhì)可得,由鄰補(bǔ)角相等和四邊形的內(nèi)角和可得,再由圓周角定理求得,然后由平行線的性質(zhì)即可求得.【詳解】解,連結(jié)OB,∵、是的切線,∴,,則,∵四邊形APBO的內(nèi)角和為360°,即,∴,又∵,,∴,∵,∴,∵,∴,故選:B.【點(diǎn)睛】本題主要考查了切線的性質(zhì)、圓周角定理、平行線的性質(zhì)和四邊形的內(nèi)角和,解題的關(guān)鍵是靈活運(yùn)用有關(guān)定理和性質(zhì)來分析解答.10、D【解析】

連接OC、OD、BD,根據(jù)點(diǎn)C,D是半圓O的三等分點(diǎn),推導(dǎo)出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計(jì)算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點(diǎn)C、D是半圓O的三等分點(diǎn),∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點(diǎn)睛】本題主要考查扇形面積的計(jì)算和幾何概率問題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】試題分析:∵△ABC為等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m∥n,∴∠1=1°;故答案為1.考點(diǎn):等腰直角三角形;平行線的性質(zhì).12、①②④【解析】

由正方形的性質(zhì)和相似三角形的判定與性質(zhì),即可得出結(jié)論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會(huì)相似;故③錯(cuò)誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點(diǎn)睛】本題考查的正方形的性質(zhì),等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì),解答此題的關(guān)鍵是熟練掌握性質(zhì)和定理.13、6【解析】

利用正方形的性質(zhì)和勾股定理可得AC的長(zhǎng),由角平分線的性質(zhì)和平行線的性質(zhì)可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,且邊長(zhǎng)為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=614、0,1,2,1【解析】5x﹣1<1x+5,移項(xiàng)得,5x﹣1x<5+1,合并同類項(xiàng)得,2x<8,系數(shù)化為1得,x<4所以不等式的非負(fù)整數(shù)解為0,1,2,1;故答案為0,1,2,1.【點(diǎn)睛】根據(jù)不等式的基本性質(zhì)正確解不等式,求出解集是解答本題的關(guān)鍵.15、12【解析】

根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動(dòng)時(shí),此時(shí)BP不斷增大,而從C向A運(yùn)動(dòng)時(shí),BP先變小后變大,從而可求出線段長(zhǎng)度解答.【詳解】根據(jù)題意觀察圖象可得BC=5,點(diǎn)P在AC上運(yùn)動(dòng)時(shí),BPAC時(shí),BP有最小值,觀察圖象可得,BP的最小值為4,即BPAC時(shí)BP=4,又勾股定理求得CP=3,因點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)A,根據(jù)函數(shù)的對(duì)稱性可得CP=AP=3,所以的面積是=12.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,解題的關(guān)鍵是注意結(jié)合圖象求出線段的長(zhǎng)度,本題屬于中等題型.16、4n+1【解析】

分析可知規(guī)律是每個(gè)圖案中正三角形的個(gè)數(shù)都比上一個(gè)圖案中正三角形的個(gè)數(shù)多4個(gè).【詳解】解:第一個(gè)圖案正三角形個(gè)數(shù)為6=1+4;第二個(gè)圖案正三角形個(gè)數(shù)為1+4+4=1+1×4;第三個(gè)圖案正三角形個(gè)數(shù)為1+1×4+4=1+3×4;…;第n個(gè)圖案正三角形個(gè)數(shù)為1+(n﹣1)×4+4=1+4n=4n+1.故答案為4n+1.考點(diǎn):規(guī)律型:圖形的變化類.三、解答題(共8題,共72分)17、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長(zhǎng)PO交圓于G點(diǎn),由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長(zhǎng)PO交圓于G點(diǎn),∵PF×PG=PC考點(diǎn):切線的判定;切割線定理.18、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解析】分析:(1)由已知代入點(diǎn)坐標(biāo)即可;(2)面積問題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問題可解;(3)設(shè)出點(diǎn)A、A′坐標(biāo),依次表示AD、AF及點(diǎn)P坐標(biāo).詳解:(1)①由已知,點(diǎn)B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點(diǎn)A坐標(biāo)為(2,4),A′坐標(biāo)為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當(dāng)y1>y2>0時(shí),y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點(diǎn)A、B作AC⊥x軸于點(diǎn)C,BD⊥x軸于點(diǎn)D,連BO,∵O為AA′中點(diǎn),S△AOB=S△AOA′=8∵點(diǎn)A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點(diǎn)A、B坐標(biāo)都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y(tǒng)=,得:﹣,∴n=,∴A′B解析式為y=﹣.當(dāng)x=a時(shí),點(diǎn)D縱坐標(biāo)為,∴AD=∵AD=AF,∴點(diǎn)F和點(diǎn)P橫坐標(biāo)為,∴點(diǎn)P縱坐標(biāo)為.∴點(diǎn)P在y1═(x>0)的圖象上.點(diǎn)睛:本題綜合考查反比例函數(shù)、一次函數(shù)圖象及其性質(zhì),解答過程中,涉及到了面積轉(zhuǎn)化方法、待定系數(shù)法和數(shù)形結(jié)合思想.19、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點(diǎn)R與點(diǎn)B重合時(shí)t+t=3,即可求出t的值;(2)根據(jù)題意運(yùn)用t表示出PQ即可;(3)當(dāng)點(diǎn)R落在□ABCD的外部時(shí)可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),AP=t,PQ=PQ=AP?tanA=t.∵點(diǎn)R與點(diǎn)B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點(diǎn)P在BC邊上時(shí),3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時(shí),重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時(shí),重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時(shí),重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時(shí),易知AP1=3,t=3.②當(dāng)DC=DP2時(shí),CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時(shí),t=4.④當(dāng)CP3=DP3時(shí),CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點(diǎn)睛】本題考查四邊形綜合題、動(dòng)點(diǎn)問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想解決問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.20、(1)();(2)定價(jià)為19元時(shí),利潤(rùn)最大,最大利潤(rùn)是1210元.(3)不能銷售完這批蜜柚.【解析】【分析】(1)根據(jù)圖象利用待定系數(shù)法可求得函數(shù)解析式,再根據(jù)蜜柚銷售不會(huì)虧本以及銷售量大于0求得自變量x的取值范圍;(2)根據(jù)利潤(rùn)=每千克的利潤(rùn)×銷售量,可得關(guān)于x的二次函數(shù),利用二次函數(shù)的性質(zhì)即可求得;(3)先計(jì)算出每天的銷量,然后計(jì)算出40天銷售總量,進(jìn)行對(duì)比即可得.【詳解】(1)設(shè),將點(diǎn)(10,200)、(15,150)分別代入,則,解得,∴,∵蜜柚銷售不會(huì)虧本,∴,又,∴,∴,∴;(2)設(shè)利潤(rùn)為元,則==,∴當(dāng)時(shí),最大為1210,∴定價(jià)為19元時(shí),利潤(rùn)最大,最大利潤(rùn)是1210元;(3)當(dāng)時(shí),,110×40=4400<4800,∴不能銷售完這批蜜柚.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用,弄清題意,找出數(shù)量間的關(guān)系列出函數(shù)解析式是解題的關(guān)鍵.21、9【解析】

根據(jù)完全平方公式、平方差公式、單項(xiàng)式乘多項(xiàng)式可以化簡(jiǎn)題目中的式子,然后將x、y的值代入化簡(jiǎn)后的式子即可解答本題.【詳解】當(dāng),時(shí),原式【點(diǎn)睛】本題考查整式的化簡(jiǎn)求值,解答本題的關(guān)鍵是明確整式化簡(jiǎn)求值的方法.22、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點(diǎn)O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點(diǎn)O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點(diǎn)O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點(diǎn)O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論