版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的奇函數(shù)滿足,且當(dāng)時,,則()A.1 B.-1 C.2 D.-22.已知函數(shù),若,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.5.已知三棱錐的所有頂點(diǎn)都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.6.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④7.已知等比數(shù)列滿足,,則()A. B. C. D.8.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知復(fù)數(shù)滿足,則的最大值為()A. B. C. D.610.在中,,則=()A. B.C. D.11.大衍數(shù)列,米源于我國古代文獻(xiàn)《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.12.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù),其中為虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實(shí)數(shù)的值是__.14.在正方體中,為棱的中點(diǎn),是棱上的點(diǎn),且,則異面直線與所成角的余弦值為__________.15.若為假,則實(shí)數(shù)的取值范圍為__________.16.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)移動支付(支付寶及微信支付)已經(jīng)漸漸成為人們購物消費(fèi)的一種支付方式,為調(diào)查市民使用移動支付的年齡結(jié)構(gòu),隨機(jī)對100位市民做問卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎勵,設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)18.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.19.(12分)已知橢圓的左焦點(diǎn)坐標(biāo)為,,分別是橢圓的左,右頂點(diǎn),是橢圓上異于,的一點(diǎn),且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點(diǎn)作兩條直線,分別交橢圓于,兩點(diǎn)(異于點(diǎn)).當(dāng)直線,的斜率之和為定值時,直線是否恒過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理.20.(12分)在中,內(nèi)角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.21.(12分)近年來,隨著“霧霾”天出現(xiàn)的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項(xiàng)對人們霧霾天外出時是否戴口罩的調(diào)查中,共調(diào)查了人,其中女性人,男性人,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關(guān)系并說明理由;(2)根據(jù)統(tǒng)計(jì)數(shù)據(jù)建立一個列聯(lián)表;(3)能否在犯錯誤的概率不超過的前提下認(rèn)為性別與霧霾天外出戴口罩的關(guān)系.附:22.(10分)某公司為了鼓勵運(yùn)動提高所有用戶的身體素質(zhì),特推出一款運(yùn)動計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動達(dá)人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:運(yùn)動達(dá)人非運(yùn)動達(dá)人總計(jì)男3560女26總計(jì)100(1)(i)將列聯(lián)表補(bǔ)充完整;(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?(2)將頻率視作概率,從該公司的所有人“運(yùn)動達(dá)人”中任意抽取3個用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.附:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質(zhì)可得;∴;∴時,;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來求解,考查理解能力和計(jì)算能力,屬于中等題.2.C【解析】試題分析:由題意知,當(dāng)時,由,當(dāng)且僅當(dāng)時,即等號是成立,所以函數(shù)的最小值為,當(dāng)時,為單調(diào)遞增函數(shù),所以,又因?yàn)?,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點(diǎn):函數(shù)的綜合問題.【方法點(diǎn)晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點(diǎn)的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.3.B【解析】
構(gòu)造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長方體為載體進(jìn)行分析.4.D【解析】
利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因?yàn)?,由,解得,即函?shù)的增區(qū)間為,所以當(dāng)時,增區(qū)間的一個子集為.故選D.【點(diǎn)睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點(diǎn)在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應(yīng)用,使問題化繁為簡,難度較易.5.B【解析】
由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點(diǎn)睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運(yùn)算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.6.D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當(dāng),則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點(diǎn)睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.7.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.8.A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點(diǎn)睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.9.B【解析】
設(shè),,利用復(fù)數(shù)幾何意義計(jì)算.【詳解】設(shè),由已知,,所以點(diǎn)在單位圓上,而,表示點(diǎn)到的距離,故.故選:B.【點(diǎn)睛】本題考查求復(fù)數(shù)模的最大值,其實(shí)本題可以利用不等式來解決.10.B【解析】
在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.11.B【解析】
直接代入檢驗(yàn),排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時可代入檢驗(yàn),利用排除法求解.12.D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復(fù)數(shù)為純虛數(shù),所以,解得.故答案為:2【點(diǎn)睛】本題主要考查純虛數(shù)定義的應(yīng)用,屬基礎(chǔ)題.14.【解析】
根據(jù)題意畫出幾何題,建立空間直角坐標(biāo)系,寫個各個點(diǎn)的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點(diǎn)建立空間直角坐標(biāo)系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點(diǎn)睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.15.【解析】
由為假,可知為真,所以對任意實(shí)數(shù)恒成立,求出的最小值,令即可.【詳解】因?yàn)闉榧?,則其否定為真,即為真,所以對任意實(shí)數(shù)恒成立,所以.又,當(dāng)且僅當(dāng),即時,等號成立,所以.故答案為:.【點(diǎn)睛】本題考查全稱命題與特稱命題間的關(guān)系的應(yīng)用,利用參變分離是解決本題的關(guān)鍵,屬于中檔題.16.【解析】
先把復(fù)數(shù)進(jìn)行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)列聯(lián)表見解析,在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān);(2)分布列見解析,期望為.【解析】
(1)根據(jù)題中所給的條件補(bǔ)全列聯(lián)表,根據(jù)列聯(lián)表求出觀測值,把觀測值同臨界值進(jìn)行比較,得到能在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)首先確定的取值,求出相應(yīng)的概率,可得分布列和數(shù)學(xué)期望.【詳解】(1)根據(jù)題意及列聯(lián)表可得完整的列聯(lián)表如下:35歲以下(含35歲)35歲以上合計(jì)使用移動支付401050不使用移動支付104050合計(jì)5050100根據(jù)公式可得,所以在犯錯誤的概率不超過0.01的前提下,認(rèn)為支付方式與年齡有關(guān).(2)根據(jù)分層抽樣,可知35歲以下(含35歲)的人數(shù)為8人,35歲以上的有2人,所以獲得獎勵的35歲以下(含35歲)的人數(shù)為,則的可能為1,2,3,且,,,其分布列為123.【點(diǎn)睛】獨(dú)立性檢驗(yàn)依據(jù)的值結(jié)合附表數(shù)據(jù)進(jìn)行判斷,另外,離散型隨機(jī)變量的分布列,在求解的過程中,注意變量的取值以及對應(yīng)的概率要計(jì)算正確,注意離散型隨機(jī)變量的期望公式的使用,屬于中檔題目.18.(1)證明見解析;(2)【解析】
(1)取AB的中點(diǎn)O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.【點(diǎn)睛】本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時對于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19.(1)(2)直線過定點(diǎn)【解析】
(1),再由,解方程組即可;(2)設(shè),,由,得,由直線MN的方程與橢圓方程聯(lián)立得到根與系數(shù)的關(guān)系,代入計(jì)算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當(dāng)直線的斜率存在時,設(shè)其方程為,設(shè),,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點(diǎn)當(dāng)直線的斜率不存在時,設(shè)直線的方程為,,,其中,∴,由,得,所以∴當(dāng)直線的斜率不存在時,直線也過定點(diǎn)綜上所述,直線過定點(diǎn).【點(diǎn)睛】本題考查求橢圓的標(biāo)準(zhǔn)方程以及直線與橢圓位置關(guān)系中的定點(diǎn)問題,在處理直線與橢圓的位置關(guān)系的大題時,一般要利用根與系數(shù)的關(guān)系來求解,本題是一道中檔題.20.(1).(2)【解析】
(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點(diǎn)睛】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024中國銀行國家助學(xué)貸款保證合同
- 2024室內(nèi)裝修施工合同范本模板
- 2024年度軟件開發(fā)及許可協(xié)議
- 2024年度知名品牌餐飲連鎖加盟合同
- 成本制勝課件教學(xué)課件
- 2024年度供貨合同范本
- 2024年大型風(fēng)力發(fā)電項(xiàng)目施工合同
- 2024年度市場營銷策劃與執(zhí)行合同
- 2024年建筑工地安全協(xié)議
- 2024年度醫(yī)療服務(wù)提供合同
- 人教版數(shù)學(xué)五年級上冊課本習(xí)題(題目)
- 鋼筋合格證(共6頁)
- BIM技術(shù)全過程工程管理及應(yīng)用策劃方案
- 彎扭構(gòu)件制作工藝方案(共22頁)
- 水利工程填塘固基、堤身加固施工方法
- 中醫(yī)針灸的骨邊穴怎樣定位
- 人教版八年級上冊英語單詞表默寫版(直接打印)
- 電脫水、電脫鹽講解
- 江西省科技創(chuàng)新平臺建設(shè)(PPT課件)
- 違約損失率(LGD)研究
- 溝槽回填施工方案(完整版)
評論
0/150
提交評論