興安市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第1頁
興安市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第2頁
興安市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第3頁
興安市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第4頁
興安市重點中學(xué)2022-2023學(xué)年數(shù)學(xué)九年級上冊期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.某水果園2017年水果產(chǎn)量為50噸,2019年水果產(chǎn)量為70噸,求該果園水果產(chǎn)量的年平均增長率.設(shè)該果園水果產(chǎn)量的年平均增長率為,則根據(jù)題意可列方程為()A. B.C. D.2.從一個不透明的口袋中摸出紅球的概率為,已知口袋中的紅球是3個,則袋中共有球的個數(shù)是()A.5 B.8 C.10 D.153.方程x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-44.在一個不透明的布袋中裝有9個白球和若干個黑球,它們除顏色不同外,其余均相同。若從中隨機摸出一個球,摸到白球的概率是,則黑球的個數(shù)為()A.3 B.12 C.18 D.275.已知現(xiàn)有的10瓶飲料中有2瓶已過了保質(zhì)期,從這10瓶飲料中任取1瓶,恰好取到已過了保質(zhì)期的飲料的概率是()A. B. C. D.6.下面四組線段中不能成比例線段的是()A.、、、 B.、、、 C.、、、 D.、、、7.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“?!?、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④8.若關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,那么k的取值范圍是()A.k≠0 B.k>4 C.k<4 D.k<4且k≠09.如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標(biāo)為(-1,2),則點B1的坐標(biāo)為()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)10.如圖,已知邊長為2的正三角形ABC頂點A的坐標(biāo)為(0,6),BC的中點D在y軸上,且在A的下方,點E是邊長為2,中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為A.3 B. C.4 D.二、填空題(每小題3分,共24分)11.如圖,在邊長為6的等邊△ABC中,D為AC上一點,AD=2,P為BD上一點,連接CP,以CP為邊,在PC的右側(cè)作等邊△CPQ,連接AQ交BD延長線于E,當(dāng)△CPQ面積最小時,QE=____________.12.某地區(qū)2017年投入教育經(jīng)費2500萬元,2019年計劃投入教育經(jīng)費3025萬元,則2017年至2019年,該地區(qū)投入教育經(jīng)費的年平均增長率為_____.13.在相似的兩個三角形中,已知其中一個三角形三邊的長是3,4,5,另一個三角形有一邊長是2,則另一個三角形的周長是.14.若,則______.15.如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(2,﹣4),B(m,2)兩點.當(dāng)x滿足條件______________時,一次函數(shù)的值大于反比例函數(shù)值.16.如圖,AB是半圓O的直徑,AB=10,過點A的直線交半圓于點C,且sin∠CAB=,連結(jié)BC,點D為BC的中點.已知點E在射線AC上,△CDE與△ACB相似,則線段AE的長為________;17.如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達式為,點的坐標(biāo)為(1,0),以為圓心,為半徑畫圓,交直線于點,交軸正半軸于點,以為圓心,為半徑的畫圓,交直線于點,交軸的正半軸于點,以為圓心,為半徑畫圓,交直線與點,交軸的正半軸于點,…按此做法進行下去,其中弧的長為_______.18.為測量學(xué)校旗桿的高度,小明的測量方法如下:如圖,將直角三角形硬紙板DEF的斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上.測得DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米.按此方法,請計算旗桿的高度為_____米.三、解答題(共66分)19.(10分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C.求證:∠A=∠D.20.(6分)已知在平面直角坐標(biāo)系中,一次函數(shù)y=x+b的圖象與反比例函數(shù)y=的圖象交于點A(1,m)和點B(-2,-1).(1)求k,b的值;(2)連結(jié)OA,OB,求△AOB的面積.21.(6分)如圖,已知拋物線與y軸交于點,與x軸交于點,點P是線段AB上方拋物線上的一個動點.求這條拋物線的表達式及其頂點坐標(biāo);當(dāng)點P移動到拋物線的什么位置時,使得,求出此時點P的坐標(biāo);當(dāng)點P從A點出發(fā)沿線段AB上方的拋物線向終點B移動,在移動中,點P的橫坐標(biāo)以每秒1個單位長度的速度變動;與此同時點M以每秒1個單位長度的速度沿AO向終點O移動,點P,M移動到各自終點時停止當(dāng)兩個動點移動t秒時,求四邊形PAMB的面積S關(guān)于t的函數(shù)表達式,并求t為何值時,S有最大值,最大值是多少?22.(8分)(l)計算:;(2)解方程.23.(8分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象與一次函數(shù)的圖象的一個交點為.(1)求這個反比例函數(shù)的解析式;(2)求兩個函數(shù)圖像的另一個交點的坐標(biāo);并根據(jù)圖象,直接寫出關(guān)于的不等式的解集.

24.(8分)為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.分數(shù)段頻數(shù)頻率74.5~79.520.0579.5~84.5m0.284.5~89.5120.389.5~94.514n94.5~99.540.1(1)表中m=__________,n=____________;(2)請在圖中補全頻數(shù)直方圖;(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分數(shù)段內(nèi);(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.25.(10分)某商店銷售一種商品,經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的月銷售量y(件)是售價x(元/件)的一次函數(shù),其售價x、月銷售量y、月銷售利潤w(元)的部分對應(yīng)值如下表:售價x(元/件)4045月銷售量y(件)300250月銷售利潤w(元)30003750注:月銷售利潤=月銷售量×(售價-進價)(1)①求y關(guān)于x的函數(shù)表達式;②當(dāng)該商品的售價是多少元時,月銷售利潤最大?并求出最大利潤;(2)由于某種原因,該商品進價提高了m元/件(m>0),物價部門規(guī)定該商品售價不得超過40元/件,該商店在今后的銷售中,月銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若月銷售最大利潤是2400元,則m的值為.26.(10分)(1)如圖1,在△ABC中,點D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點P,求證:;(2)如圖,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點.①如圖2,若AB=AC=1,直接寫出MN的長;②如圖3,求證MN2=DM·EN.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)2019年的產(chǎn)量=2017年的產(chǎn)量×(1+年平均增長率)2,即可列出方程.【詳解】解:根據(jù)題意可得,2018年的產(chǎn)量為50(1+x),

2019年的產(chǎn)量為50(1+x)(1+x)=50(1+x)2,

即所列的方程為:50(1+x)2=1.

故選:B.【點睛】此題主要考查了一元二次方程的應(yīng)用,解題關(guān)鍵是要讀懂題意,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程.2、D【分析】根據(jù)概率公式,即可求解.【詳解】3÷=15(個),答:袋中共有球的個數(shù)是15個.故選D.【點睛】本題主要考查概率公式,掌握概率公式,是解題的關(guān)鍵.3、C【解析】兩邊開方得到x=±1.【詳解】解:∵x1=4,

∴x=±1,

∴x1=1,x1=-1.

故選:C.【點睛】本題考查了解一元二次方程-直接開平方法:形如ax1+c=0(a≠0)的方程可變形為,當(dāng)a、c異號時,可利用直接開平方法求解.4、C【分析】設(shè)黑球個數(shù)為,根據(jù)概率公式可知白球個數(shù)除以總球數(shù)等于摸到白球的概率,建立方程求解即可.【詳解】設(shè)黑球個數(shù)為,由題意得解得:故選C.【點睛】本題考查根據(jù)概率求數(shù)量,熟練掌握概率公式建立方程是解題的關(guān)鍵.5、C【分析】直接利用概率公式求解.【詳解】∵10瓶飲料中有2瓶已過了保質(zhì)期,∴從這10瓶飲料中任取1瓶,恰好取到已過了保質(zhì)期的飲料的概率是.故選C.【點睛】本題考查了概率公式:隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)除以所有可能出現(xiàn)的結(jié)果數(shù).6、B【分析】根據(jù)成比例線段的概念,對選項進行一一分析,即可得出答案.【詳解】A.2×6=3×4,能成比例;B.4×10≠5×6,不能成比例;C.1×=×,能成比例;D.2×=×,能成比例.故選B.【點睛】本題考查了成比例線段的概念.在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段.7、D【分析】根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關(guān)鍵8、C【解析】根據(jù)判別式的意義得到△=(-1)2-1k>0,然后解不等式即可.【詳解】∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,

∴解得:k<1.

故答案為:C.【點睛】本題考查的知識點是一元二次方程根的情況與判別式△的關(guān)系,解題關(guān)鍵是熟記一元二次方程根的情況與判別式△的關(guān)系:(1)△>0方程有兩個不相等的實數(shù)根;(2)△=0方程有兩個相等的實數(shù)根;(3)△<0方程沒有實數(shù)根.9、A【解析】過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,依據(jù)△AOB和△A1OB1相似,且相似比為1:2,即可得到,再根據(jù)△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進而得出點B1的坐標(biāo)為(2,-4).【詳解】解:如圖,過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,

∵點B的坐標(biāo)為(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比為1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴點B1的坐標(biāo)為(2,-4),

故選:A.【點睛】本題考查的是位似變換的性質(zhì),正確理解位似與相似的關(guān)系,記憶關(guān)于原點位似的兩個圖形對應(yīng)點坐標(biāo)之間的關(guān)系是解題的關(guān)鍵.10、B【分析】首先分析得到當(dāng)點E旋轉(zhuǎn)至y軸正方向上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長.【詳解】如圖,當(dāng)點E旋轉(zhuǎn)至y軸正方向上時DE最?。摺鰽BC是等邊三角形,D為BC的中點,∴AD⊥BC.∵AB=BC=2,∴AD=AB?sin∠B=.∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標(biāo)為(0,1),∴OA=1.∴.故選B.二、填空題(每小題3分,共24分)11、【分析】如圖,過點D作DF⊥BC于F,由“SAS”可證△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性質(zhì)和勾股定理可求BD的長,由銳角三角函數(shù)可求BP的長,由相似三角形的性質(zhì)可求AE的長,即可求解.【詳解】如圖,過點D作DF⊥BC于F,∵△ABC,△PQC是等邊三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF÷tan30°=CF=2,∴BF=4,∴BD===2,∵△CPQ是等邊三角形,∴S△CPQ=CP2,∴當(dāng)CP⊥BD時,△CPQ面積最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ?AE=.故答案為;.【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定和性質(zhì),直角三角形的性質(zhì),勾股定理等知識,求出BP的長是本題的關(guān)鍵.12、10%【解析】設(shè)年平均增長率為x,則經(jīng)過兩次變化后2019年的經(jīng)費為2500(1+x)2;2019年投入教育經(jīng)費3025萬元,建立方程2500(1+x)2=3025,求解即可.【詳解】解:設(shè)年平均增長率為x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合題意舍去).所以2017年到2019年該地區(qū)投入教育經(jīng)費的年平均增長率為10%.【點睛】本題考查一元二次方程的應(yīng)用--求平均變化率的方法,能夠列出式子是解答本題的關(guān)鍵.13、8或6或【分析】由一個三角形三邊的長是3,4,5,可求得其周長,又由相似三角形周長的比等于相似比,分別從2與3對應(yīng),2與4對應(yīng),2與5對應(yīng),去分析求解即可求得答案.【詳解】解:∵一個三角形三邊的長是3,4,5,

∴此三角形的周長為:3+4+5=12,

∵在相似的兩個三角形中,另一個三角形有一邊長是2,

∴若2與3對應(yīng),則另一個三角形的周長是:;若2與4對應(yīng),則另一個三角形的周長是:;若2與5對應(yīng),則另一個三角形的周長是:.【點睛】本題考查相似三角形性質(zhì).熟知相似三角形性質(zhì),解答時由于對應(yīng)邊到比發(fā)生變化,會得到不同到結(jié)果,本題難度不大,但易漏求,屬于基礎(chǔ)題.14、-1【分析】由可得,,再代入代數(shù)式計算即可.【詳解】∵,∴,∴原式=,故填:-1.【點睛】本題考查比例的基本性質(zhì),屬于基礎(chǔ)題型.15、x<﹣4或0<x<2【分析】(1)根據(jù)一次函數(shù)y=-x+b的圖象與反比例函數(shù)(a≠0)的圖象相交于A(2,﹣4),B(m,2)兩點,可以求得a=-8,m=-4,根據(jù)函數(shù)圖象和點A、B的坐標(biāo)可以得到當(dāng)x為何值時,一次函數(shù)值大于反比例函數(shù)值.【詳解】∵一次函數(shù)y=-x+b的圖象與反比例函數(shù)的圖象相交于A(2,-4)、B(m,2)兩點,∴將x=2,y=-4代入得,a=-8;∴將x=m,y=2代入,得m=-4,∴點B(-4,2),∵點A(2,-4),點B(-4,2),∴由函數(shù)的圖象可知,當(dāng)x<﹣4或0<x<2時,一次函數(shù)值大于反比例函數(shù)值.故答案為:x<﹣4或0<x<2.【點睛】本題考查反比例函數(shù)和一次函數(shù)的交點問題,解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想,找出所求問題需要的條件.16、3或9或或【分析】先根據(jù)圓周角定理及正弦定理得到BC=8,再根據(jù)勾股定理求出AC=6,再分情況討論,從而求出AE.【詳解】∵AB是半圓O的直徑,∴∠ACB=90,∵sin∠CAB=,∴,∵AB=10,∴BC=8,∴,∵點D為BC的中點,∴CD=4.∵∠ACB=∠DCE=90,①當(dāng)∠CDE1=∠ABC時,△ACB∽△E1CD,如圖∴,即,∴CE1=3,∵點E1在射線AC上,∴AE1=6+3=9,同理:AE2=6-3=3.②當(dāng)∠CE3D=∠ABC時,△ABC∽△DE3C,如圖∴,即,∴CE3=,∴AE3=6+=,同理:AE4=6-=.故答案為:3或9或或.【點睛】此題考查相似三角形的判定及性質(zhì),當(dāng)三角形的相似關(guān)系不是用相似符號連接時,一定要分情況來確定兩個三角形的對應(yīng)關(guān)系,這是解此題容易錯誤的地方.17、.【分析】連接,,,易求得垂直于x軸,可得為圓的周長,再找出圓半徑的規(guī)律即可解題.【詳解】連接,,

是上的點,

,

直線l解析式為,

,

為等腰直角三角形,即軸,

同理,垂直于x軸,

為圓的周長,

以為圓心,為半徑畫圓,交x軸正半軸于點,以為圓心,為半徑畫圓,交x軸正半軸于點,以此類推,

,

,

當(dāng)時,

故答案為【點睛】本題考查了圓周長的計算,考查了從圖中找到圓半徑規(guī)律的能力,本題中準(zhǔn)確找到圓半徑的規(guī)律是解題的關(guān)鍵.18、11.1【解析】根據(jù)題意證出△DEF∽△DCA,進而利用相似三角形的性質(zhì)得出AC的長,即可得出答案.【詳解】由題意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,則,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗桿的高度為11.1米.故答案為11.1.【點睛】本題考查了相似三角形的應(yīng)用;由三角形相似得出對應(yīng)邊成比例是解題的關(guān)鍵.三、解答題(共66分)19、答案見解析【分析】由BE=CF可得BF=CE,再結(jié)合AB=DC,∠B=∠C可證得△ABF≌△DCE,問題得證.【詳解】解∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE,∴∠A=∠D.【點睛】本題考查了全等三角形的判定和性質(zhì),是中考中比較常見的知識點,一般難度不大,需熟練掌握全等三角形的判定和性質(zhì).20、(1)k=2;b=1;(2)【解析】(1)把B(-2,-1)分別代入和即可求出k,b的值;(2)直線AB與x軸交于點C,求出點C的坐標(biāo),可得OC的長,再求出點A的坐標(biāo),然后根據(jù)求解即可.【詳解】解:(1)把B(-2,-1)代入,解得,把B(-2,-1)代入,解得.(2)如圖,直線AB與x軸交于點C,把y=0代入,得x=-1,則C點坐標(biāo)為(-1,0),∴OC=1.把A(1,m)代入得,∴A點坐標(biāo)為A(1,2)..【點睛】本題考查了一次函數(shù)與反比例函數(shù)圖形上點的坐標(biāo)特征,一次函數(shù)與坐標(biāo)軸的交點,坐標(biāo)與圖形,以及三角形的面積公式,運用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.21、(1)拋物線的表達式為,拋物線的頂點坐標(biāo)為;(2)P點坐標(biāo)為;(3)當(dāng)時,S有最大值,最大值為1.

【解析】分析:(1)由A、B坐標(biāo),利用待定系數(shù)法可求得拋物線的表達式,化為頂點式可求得頂點坐標(biāo);(2)過P作PC⊥y軸于點C,由條件可求得∠PAC=60°,可設(shè)AC=m,在Rt△PAC中,可表示出PC的長,從而可用m表示出P點坐標(biāo),代入拋物線解析式可求得m的值,即可求得P點坐標(biāo);(3)用t可表示出P、M的坐標(biāo),過P作PE⊥x軸于點E,交AB于點F,則可表示出F的坐標(biāo),從而可用t表示出PF的長,從而可表示出△PAB的面積,利用S四邊形PAMB=S△PAB+S△AMB,可得到S關(guān)于t的二次函數(shù),利用二次函數(shù)的性質(zhì)可求得其最大值.詳解:根據(jù)題意,把,代入拋物線解析式可得,解得,拋物線的表達式為,,拋物線的頂點坐標(biāo)為;如圖1,過P作軸于點C,,,當(dāng)時,,,即,設(shè),則,,把P點坐標(biāo)代入拋物線表達式可得,解得或,經(jīng)檢驗,與點A重合,不合題意,舍去,所求的P點坐標(biāo)為;當(dāng)兩個動點移動t秒時,則,,如圖2,作軸于點E,交AB于點F,則,,,點A到PE的距離竽OE,點B到PE的距離等于BE,,且,,當(dāng)時,S有最大值,最大值為1.

點睛:本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、直角三角形的性質(zhì)、二次函數(shù)的性質(zhì)、三角形的面積及方程思想等知識.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中構(gòu)造Rt△PAC是解題的關(guān)鍵,在(3)中用t表示出P、M的坐標(biāo),表示出PF的長是解題的關(guān)鍵.本題考查知識點較多,綜合性較強,難度適中.22、(1);(2)【分析】(1)原式利用平方差公式和單項式乘以多項式把括號展開,再合并同類項即可得到答案;(2)方程變形后分解因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】(1),==;(2)∴,解得,.【點睛】此題主要考查了一元二次方程的解法,正確掌握解題方法是解題的關(guān)鍵,同時還考查了實數(shù)和混合運算.23、(1)(2)或【分析】(1)把A坐標(biāo)代入一次函數(shù)解析式求出a的值,確定出A的坐標(biāo),再代入反比例解析式求出k的值,即可確定出反比例解析式;(2)解析式聯(lián)立求得B的坐標(biāo),然后根據(jù)圖象即可求得.【詳解】解:(1)∵點在一次函數(shù)圖象上,∴∴∴∵點在反比例函數(shù)的圖象上,∴.∴(2)由或∴由圖象可知,的解集是或.

【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次函數(shù)圖象上點的坐標(biāo)特征以及反比例函數(shù)圖象上點的坐標(biāo)特征,根據(jù)一次函數(shù)圖象上點的坐標(biāo)特征求出點A、B的坐標(biāo)是解題的關(guān)鍵.24、(1)8,0.35;(2)見解析;(3)89.5~94.5;(4).【分析】(1)根據(jù)頻數(shù)=總數(shù)×頻率可求得m的值,利用頻率=頻數(shù)÷總數(shù)可求得n的值;(2)根據(jù)m的值補全直方圖即可;(3)根據(jù)中位數(shù)的概念進行求解即可求得答案;(4)畫樹狀圖得到所有等可能的情況數(shù),找出符合條件的情況數(shù),然后利用概率公式進行求解即可.【詳解】(1)m=40×0.2=8,n=14÷40=0.35,故答案為8,0.35;(2)補全圖形如下:(3)由于40個數(shù)據(jù)的中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在89.5~94.5,∴推測他的成績落在分數(shù)段89.5~94.5內(nèi),故答案為89.5~94.5;(4)選手有4人,2名是男生,2名是女生,畫樹狀圖如下:共有12種等可能的結(jié)果,其中一名男生一名女生的結(jié)果數(shù)有8種,所以恰好是一名男生和一名女生的概率為.【點睛】本題考查了頻數(shù)(率)分布表,頻數(shù)分布直方圖,中位數(shù),列表法或樹狀圖法求概率,正確把握相關(guān)知識是解題的關(guān)鍵.25、(1)①y=-10x+700;②當(dāng)該商品的售價是50元/件時,月銷售利潤最大,最大利潤是4000元.(1)1.【分析】(1)①將點(40,300)、(45,150)代入一次函數(shù)表達式:y=kx+b即可求解;②設(shè)該商品的售價是x元,則月銷售利潤w=y(x-30),求解即可;(1)根據(jù)進價變動后每件的利潤變?yōu)閇x-(m+30)]元,用其乘以月銷售量,得到關(guān)于x的二次函數(shù),求得對稱軸,判斷對稱軸大于50,由開口向下的二次函數(shù)的性質(zhì)可知,當(dāng)x=40時w取得最大值1400,解關(guān)于m的方程即可.【詳解】(1)①解:設(shè)y=kx+b(k,b為常數(shù),k≠0)根據(jù)題意得:,解得:∴y=-10x+70

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論