九年級(jí)數(shù)學(xué)《圓》課件【三篇】_第1頁(yè)
九年級(jí)數(shù)學(xué)《圓》課件【三篇】_第2頁(yè)
九年級(jí)數(shù)學(xué)《圓》課件【三篇】_第3頁(yè)
九年級(jí)數(shù)學(xué)《圓》課件【三篇】_第4頁(yè)
九年級(jí)數(shù)學(xué)《圓》課件【三篇】_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

九年級(jí)數(shù)學(xué)《圓》課件【三篇】

九年級(jí)數(shù)學(xué)《圓》課件篇一1.了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對(duì)應(yīng)點(diǎn)的概念及其應(yīng)用它們解決一些實(shí)際問(wèn)題.2.通過(guò)復(fù)習(xí)平移、軸對(duì)稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開(kāi)始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實(shí)際問(wèn)題.3.旋轉(zhuǎn)的基本性質(zhì).重點(diǎn)旋轉(zhuǎn)及對(duì)應(yīng)點(diǎn)的有關(guān)概念及其應(yīng)用.難點(diǎn)旋轉(zhuǎn)的基本性質(zhì).一、復(fù)習(xí)引入(學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下面各題.1.將如圖所示的四邊形ABCD平移,使點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,作出平移后的圖形.2.如圖,已知△ABC和直線l,請(qǐng)你畫出△ABC關(guān)于l的對(duì)稱圖形△A′B′C′.3.圓是軸對(duì)稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?(口述)老師點(diǎn)評(píng)并總結(jié):(1)平移的有關(guān)概念及性質(zhì).(2)如何畫一個(gè)圖形關(guān)于一條直線(對(duì)稱軸)的對(duì)稱圖形并口述它具有的一些性質(zhì).(3)什么叫軸對(duì)稱圖形?二、探索新知我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運(yùn)動(dòng)變化呢?回答是肯定的,下面我們就來(lái)研究.1.請(qǐng)同學(xué)們看講臺(tái)上的大時(shí)鐘,有什么在不停地轉(zhuǎn)動(dòng)?旋轉(zhuǎn)圍繞什么點(diǎn)呢?從現(xiàn)在到下課時(shí)針轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度?(口答)老師點(diǎn)評(píng):時(shí)針、分針、秒針在不停地轉(zhuǎn)動(dòng),它們都繞時(shí)鐘的中心.從現(xiàn)在到下課時(shí)針轉(zhuǎn)了________度,分針轉(zhuǎn)了________度,秒針轉(zhuǎn)了________度.2.再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動(dòng).如何轉(zhuǎn)到新的位置?(老師點(diǎn)評(píng)略)3.第1,2兩題有什么共同特點(diǎn)呢?共同特點(diǎn)是如果我們把時(shí)鐘、風(fēng)車風(fēng)輪當(dāng)成一個(gè)圖形,那么這些圖形都可以繞著某一固定點(diǎn)轉(zhuǎn)動(dòng)一定的角度.像這樣,把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角.如果圖形上的點(diǎn)P經(jīng)過(guò)旋轉(zhuǎn)變?yōu)辄c(diǎn)P′,那么這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對(duì)應(yīng)點(diǎn).下面我們來(lái)運(yùn)用這些概念來(lái)解決一些問(wèn)題.例1如圖,如果把鐘表的指針看做三角形OAB,它繞O點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到△OEF,在這個(gè)旋轉(zhuǎn)過(guò)程中:(1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A,B分別移動(dòng)到什么位置?解:(1)旋轉(zhuǎn)中心是O,∠AOE,∠BOF等都是旋轉(zhuǎn)角.(2)經(jīng)過(guò)旋轉(zhuǎn),點(diǎn)A和點(diǎn)B分別移動(dòng)到點(diǎn)E和點(diǎn)F的位置.自主探究:請(qǐng)看我手里拿著的硬紙板,我在硬紙板上挖下一個(gè)三角形的洞,再挖一個(gè)點(diǎn)O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個(gè)挖掉的三角形圖案(△ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動(dòng)硬紙板,在黑板上再描出這個(gè)挖掉的三角形(△A′B′C′),移去硬紙板.(分組討論)根據(jù)圖回答下面問(wèn)題(一組推薦一人上臺(tái)說(shuō)明)1.線段OA與OA′,OB與OB′,OC與OC′有什么關(guān)系?2.∠AOA′,∠BOB′,∠COC′有什么關(guān)系?3.△ABC與△A′B′C′的形狀和大小有什么關(guān)系?老師點(diǎn)評(píng):1.OA=OA′,OB=OB′,OC=OC′,也就是對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.2.∠AOA′=∠BOB′=∠COC′,我們把這三個(gè)相等的角,即對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角稱為旋轉(zhuǎn)角.3.△ABC和△A′B′C′形狀相同和大小相等,即全等.綜合以上的實(shí)驗(yàn)操作得出:(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前、后的圖形全等.例2如圖,△ABC繞C點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,試確定頂點(diǎn)B的對(duì)應(yīng)點(diǎn)的位置,以及旋轉(zhuǎn)后的三角形.分析:繞C點(diǎn)旋轉(zhuǎn),A點(diǎn)的對(duì)應(yīng)點(diǎn)是D點(diǎn),那么旋轉(zhuǎn)角就是∠ACD,根據(jù)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即∠BCB′=∠ACD,又由對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,即CB=CB′,就可確定B′的位置,如圖所示.解:(1)連接CD;(2)以CB為一邊作∠BCE,使得∠BCE=∠ACD;(3)在射線CE上截取CB′=CB,則B′即為所求的B的對(duì)應(yīng)點(diǎn);(4)連接DB′,則△DB′C就是△ABC繞C點(diǎn)旋轉(zhuǎn)后的圖形.三、課堂小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))本節(jié)課應(yīng)掌握:1.對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;2.對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;3.旋轉(zhuǎn)前、后的圖形全等及其它們的應(yīng)用.四、作業(yè)布置教材第62~63頁(yè)習(xí)題4,5,6.九年級(jí)數(shù)學(xué)《圓》課件篇二1.正確認(rèn)識(shí)什么是中心對(duì)稱、對(duì)稱中心,理解關(guān)于中心對(duì)稱圖形的性質(zhì)特點(diǎn).2.能根據(jù)中心對(duì)稱的性質(zhì),作出一個(gè)圖形關(guān)于某點(diǎn)成中心對(duì)稱的對(duì)稱圖形.重點(diǎn)中心對(duì)稱的概念及性質(zhì).難點(diǎn)中心對(duì)稱性質(zhì)的推導(dǎo)及理解.復(fù)習(xí)引入問(wèn)題:作出下圖的兩個(gè)圖形繞點(diǎn)O旋轉(zhuǎn)180°后的圖案,并回答下列的問(wèn)題:1.以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后兩個(gè)圖形是否重合?2.各對(duì)應(yīng)點(diǎn)繞O旋轉(zhuǎn)180°后,這三點(diǎn)是否在一條直線上?老師點(diǎn)評(píng):可以發(fā)現(xiàn),如圖所示的兩個(gè)圖案繞O旋轉(zhuǎn)180°后都是重合的,即甲圖與乙圖重合,△OAB與△COD重合.像這樣,把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心.這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn).探索新知(老師)在黑板上畫一個(gè)三角形ABC,分兩種情況作兩個(gè)圖形:(1)作△ABC一頂點(diǎn)為對(duì)稱中心的對(duì)稱圖形;(2)作關(guān)于一定點(diǎn)O為對(duì)稱中心的對(duì)稱圖形.第一步,畫出△ABC.第二步,以△ABC的C點(diǎn)(或O點(diǎn))為中心,旋轉(zhuǎn)180°畫出△A′B′C和△A′B′C′,如圖(1)和圖(2)所示.從圖(1)中可以得出△ABC與△A′B′C是全等三角形;分別連接對(duì)稱點(diǎn)AA′,BB′,CC′,點(diǎn)O在這些線段上且O平分這些線段.下面,我們就以圖(2)為例來(lái)證明這兩個(gè)結(jié)論.證明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可證:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;(2)點(diǎn)A′是點(diǎn)A繞點(diǎn)O旋轉(zhuǎn)180°后得到的,即線段OA繞點(diǎn)O旋轉(zhuǎn)180°得到線段OA′,所以點(diǎn)O在線段AA′上,且OA=OA′,即點(diǎn)O是線段AA′的中點(diǎn).同樣地,點(diǎn)O也在線段BB′和CC′上,且OB=OB′,OC=OC′,即點(diǎn)O是BB′和CC′的中點(diǎn).因此,我們就得到1.關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分.2.關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.例題精講例1如圖,已知△ABC和點(diǎn)O,畫出△DEF,使△DEF和△ABC關(guān)于點(diǎn)O成中心對(duì)稱.分析:中心對(duì)稱就是旋轉(zhuǎn)180°,關(guān)于點(diǎn)O成中心對(duì)稱就是繞O旋轉(zhuǎn)180°,因此,我們連AO,BO,CO并延長(zhǎng),取與它們相等的線段即可得到.解:(1)連接AO并延長(zhǎng)AO到D,使OD=OA,于是得到點(diǎn)A的對(duì)稱點(diǎn)D,如圖所示.(2)同樣畫出點(diǎn)B和點(diǎn)C的對(duì)稱點(diǎn)E和F.(3)順次連接DE,EF,F(xiàn)D,則△DEF即為所求的三角形.例2(學(xué)生練習(xí),老師點(diǎn)評(píng))如圖,已知四邊形ABCD和點(diǎn)O,畫四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關(guān)于點(diǎn)O成中心對(duì)稱(只保留作圖痕跡,不要求寫出作法).課堂小結(jié)(學(xué)生總結(jié),老師點(diǎn)評(píng))本節(jié)課應(yīng)掌握:中心對(duì)稱的兩條基本性質(zhì):1.關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)點(diǎn)所連線都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分;2.關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形及其它們的應(yīng)用.作業(yè)布置教材第66頁(yè)練習(xí)

九年級(jí)數(shù)學(xué)《圓》課件篇三了解中心對(duì)稱圖形的概念及中心對(duì)稱圖形的對(duì)稱中心的概念,掌握這兩個(gè)概念的應(yīng)用.復(fù)習(xí)兩個(gè)圖形關(guān)于中心對(duì)稱的有關(guān)概念,利用這個(gè)所學(xué)知識(shí)探索一個(gè)圖形是中心對(duì)稱圖形的有關(guān)概念及其他的運(yùn)用.重點(diǎn)中心對(duì)稱圖形的有關(guān)概念及其它們的運(yùn)用.難點(diǎn)區(qū)別關(guān)于中心對(duì)稱的兩個(gè)圖形和中心對(duì)稱圖形.一、復(fù)習(xí)引入1.(老師口問(wèn))口答:關(guān)于中心對(duì)稱的兩個(gè)圖形具有什么性質(zhì)?(老師口述):關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分.關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形.2.(學(xué)生活動(dòng))作圖題.(1)作出線段AO關(guān)于O點(diǎn)的對(duì)稱圖形,如圖所示.(2)作出三角形AOB關(guān)于O點(diǎn)的對(duì)稱圖形,如圖所示.延長(zhǎng)AO使OC=AO,延長(zhǎng)BO使OD=BO,連接CD,則△COD即為所求,如圖所示.二、探索新知從另一個(gè)角度看,上面的(1)題就是將線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°,因?yàn)镺A=OB,所以,就是線段AB繞它的中點(diǎn)旋轉(zhuǎn)180°后與它本身重合.上面的(2)題,連接AD,BC,則剛才的關(guān)于中心O對(duì)稱的兩個(gè)圖形就成了平行四邊形,如圖所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD繞它的兩條對(duì)角線交點(diǎn)O旋轉(zhuǎn)180°后與它本身重合.因此,像這樣,把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心.(學(xué)生活動(dòng))例1從剛才講的線段、平行四邊形都是中心對(duì)稱圖形外,每一位同學(xué)舉出三個(gè)圖形,它們也是中心對(duì)稱圖形.老師點(diǎn)評(píng):老師邊提問(wèn)學(xué)生邊解答的特點(diǎn).(學(xué)生活動(dòng))例2請(qǐng)說(shuō)出中心對(duì)稱圖形具有什么特點(diǎn)?老師點(diǎn)評(píng):中心對(duì)稱圖形具有勻稱美觀、平穩(wěn)的特點(diǎn).例3求證:如圖,任何具有對(duì)稱中心的四邊形是平行四邊形.分析:中心對(duì)稱圖形的對(duì)稱中心是對(duì)應(yīng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論