浙江省溫州市溫州中學2021-2022學年高考考前模擬數(shù)學試題含解析_第1頁
浙江省溫州市溫州中學2021-2022學年高考考前模擬數(shù)學試題含解析_第2頁
浙江省溫州市溫州中學2021-2022學年高考考前模擬數(shù)學試題含解析_第3頁
浙江省溫州市溫州中學2021-2022學年高考考前模擬數(shù)學試題含解析_第4頁
浙江省溫州市溫州中學2021-2022學年高考考前模擬數(shù)學試題含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,集合,則=()A. B. C. D.R2.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.3.設變量滿足約束條件,則目標函數(shù)的最大值是()A.7 B.5 C.3 D.24.已知函數(shù),,的零點分別為,,,則()A. B.C. D.5.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.6.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.7.洛書,古稱龜書,是陰陽五行術數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.8.已知,且,則()A. B. C. D.9.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直10.馬林●梅森是17世紀法國著名的數(shù)學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數(shù)論方面的這一貢獻,將形如2P﹣1(其中p是素數(shù))的素數(shù),稱為梅森素數(shù).若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是()A.3 B.4 C.5 D.611.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.12.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最小正周期是_______________,單調遞增區(qū)間是__________.14.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.15.已知在等差數(shù)列中,,,前n項和為,則________.16.驗證碼就是將一串隨機產生的數(shù)字或符號,生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識別其中的驗證碼信息,輸入表單提交網(wǎng)站驗證,驗證成功后才能使用某項功能.很多網(wǎng)站利用驗證碼技術來防止惡意登錄,以提升網(wǎng)絡安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗證碼由0,1,2,…,9中的五個數(shù)字隨機組成.將中間數(shù)字最大,然后向兩邊對稱遞減的驗證碼稱為“鐘型驗證碼”(例如:如14532,12543),已知某人收到了一個“鐘型驗證碼”,則該驗證碼的中間數(shù)字是7的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知正項數(shù)列的前項和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設正項數(shù)列的前項和為,若,且.①求數(shù)列的通項公式;②求證:.19.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50名學生,統(tǒng)計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數(shù)分布表:分數(shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.20.(12分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)),求直線與曲線的交點的直角坐標.21.(12分)在平面直角坐標系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積22.(10分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】試題分析:由題,,,選D考點:集合的運算2.C【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.3.B【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.4.C【解析】

轉化函數(shù),,的零點為與,,的交點,數(shù)形結合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結合法研究函數(shù)的零點,考查了學生轉化劃歸,數(shù)形結合的能力,屬于中檔題.5.D【解析】

由雙曲線方程可得漸近線方程,根據(jù)傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據(jù)雙曲線漸近線傾斜角求解參數(shù)值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.6.D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.7.A【解析】

基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.8.B【解析】分析:首先利用同角三角函數(shù)關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉化為關于的式子,代入從而求得結果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關同角三角函數(shù)關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數(shù)關系式求解,也可以結合三角函數(shù)的定義式求解.9.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系10.C【解析】

模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數(shù)的個數(shù)是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.11.A【解析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.12.B【解析】

利用雙曲線的定義和條件中的比例關系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉化為a,b,c的關系式.二、填空題:本題共4小題,每小題5分,共20分。13.,,【解析】

化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應用,余弦函數(shù)的圖象與性質,屬于中檔題.14.【解析】令直線:,與橢圓方程聯(lián)立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標函數(shù),再求這個函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調性法等.15.39【解析】

設等差數(shù)列公差為d,首項為,再利用基本量法列式求解公差與首項,進而求得即可.【詳解】設等差數(shù)列公差為d,首項為,根據(jù)題意可得,解得,所以.故答案為:39【點睛】本題考查等差數(shù)列的基本量計算以及前n項和的公式,屬于基礎題.16.【解析】

首先判斷出中間號碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計算公式計算出所求概率.【詳解】根據(jù)“鐘型驗證碼”中間數(shù)字最大,然后向兩邊對稱遞減,所以中間的數(shù)字可能是.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.當中間是時,其它個數(shù)字可以是,選其中兩個排在左邊(排法唯一),另外兩個排在右邊(排法唯一),所以方法數(shù)有種.所以該驗證碼的中間數(shù)字是7的概率為.故答案為:【點睛】本小題主要考查古典概型概率計算,考查分類加法計數(shù)原理、分類乘法計數(shù)原理的應用,考查運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)取的中點,連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點,連接.又為的中點,則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因為,為的中點,所以.因為,所以.因為平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標系:因為,所以點.則.設平面的法向量為,由,得,令,得平面的一個法向量為;顯然平面的一個法向量為;設二面角的大小為,則.故二面角的余弦值是.【點睛】本題主要考查了線面垂直的證明以及建立空間直角坐標系求解二面角的問題,需要用到線線垂直與線面垂直的轉換以及法向量的求法等.屬于中檔題.18.(1);(2)①;②詳見解析.【解析】

(1)依題意可表示,,相減得,由等比數(shù)列通項公式轉化為首項與公比,解得答案,并由其都是正項數(shù)列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關系,由等差數(shù)列的通項公式即可得答案;②由已知關系,表示并相減即可表示遞推關系,顯然當時,成立,當,時,表示,由分組求和與正項數(shù)列性質放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因為,所以,且,解得.(2)①因為,所以,兩式相減,得,即.因為,所以,即.而當時,,可得,故,所以對任意的正整數(shù)都成立,所以數(shù)列是等差數(shù)列,公差為1,首項為1,所以數(shù)列的通項公式為.②因為,所以,兩式相減,得,即,所以對任意的正整數(shù),都有.令,而當時,顯然成立,所以當,時,,所以,即,所以,得證.【點睛】本題考查由前n項和關系求等比數(shù)列公比,求等差數(shù)列通項公式,還考查了由分組求和表示數(shù)列和并由正項數(shù)列放縮證明不等式,屬于難題.19.(1)見解析;(2)【解析】

(1)補充完整的列聯(lián)表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值,所以有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關.(2)抽取的5名學生中競賽成績合格的有名學生,記為,競賽成績不合格的有名學生,記為,從這5名學生中隨機抽取2名學生的基本事件有:,共10種,這2名學生競賽成績都合格的基本事件有:,共3種,所以這2名學生競賽成績都合格的概率為.20.【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論