




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教學目標1.完全平方公式的推導及其應用.2.完全平方公式的幾何解釋.教學目標1.完全平方公式的推導及其應用.重點難點重點完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.難點理解完全平方公式的結構特征,并能靈活應用公式進行計算.重點難點重點教學設計一、復習引入你能列出下列代數(shù)式嗎?(1)兩數(shù)和的平方;(2)兩數(shù)差的平方.你能計算出它們的結果嗎?二、探究新知你能發(fā)現(xiàn)它們的運算形式與結果有什么規(guī)律嗎?引導學生用自己的語言敘述所發(fā)現(xiàn)的規(guī)律,允許學生之間互相補充,教師不急于概括;舉例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教學設計一、復習引入教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構特征.歸納:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2語言敘述:兩個數(shù)的和(或差)的平方,等于它們的平方和,加上(或減去)它們積的2倍.這兩個公式叫做(乘法的)完全平方公式.教師可以在前面的基礎上繼續(xù)鼓勵學生發(fā)現(xiàn)這個公式的一些特點:如公式左、右邊的結構,并嘗試說明產生這些特點的原因.還可以引導學生將(a-b)2的結果用(a+b)2來解釋:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構教學設計教學設計2.教材例4:運用完全平方公式計算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此處可先讓學生獨立思考,然后自主發(fā)言,口述解題思路,可先不給出題目中“運用完全平方公式計算”的要求,允許他們算法的多樣化,但要求明白每種算法的局限和優(yōu)越性.教學設計2.教材例4:運用完全平方公式計算:教學設計四、再探新知1.現(xiàn)有下圖所示三種規(guī)格的卡片各若干張,請你根據(jù)二次三項式a2+2ab+b2,選取相應種類和數(shù)量的卡片,嘗試拼成一個正方形,并討論該正方形的代數(shù)意義:教學設計四、再探新知教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1小題由小組合作共同完成拼圖游戲,比一比哪個小組快?第2小題借助多媒體課件,直觀演示面積的變化,幫助學生聯(lián)想代數(shù)恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1六、鞏固拓展教材例5:運用乘法公式計算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;教學設計六、鞏固拓展教學設計(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教學設計(2)(a+b+c)2教學設計講解此例之前可先讓學生自學教材第111頁的“添括號法則”并完成教材第111頁練習第1題.然后給出例5題目,讓學生思考選擇哪個公式.第(1)小題的解決關鍵是要引導學生比較兩個因式的各項符號,分別找出符號相同及相反的項,學會運用整體思想,將其與公式中的字母a,b對照,其中-2y+3=-(2y-3),故應運用平方差公式.第(2)小題可將任意兩項之和看作一個整體,然后運用完全平方公式.在解此例的過程中,應注意邊辯析各項的符號特征,邊對照兩個公式的結構特征,教師應完整詳細地書寫解題過程,幫助學生理解這一公式的拓展應用,突破難點.教學設計講解此例之前可先讓學生自學教材第111頁的“添括號法則”并完七、課堂小結談一談:你對完全平方公式有了哪些認識?它與平方差公式有什么區(qū)別和聯(lián)系?作業(yè):教材第112頁習題14.2第2題,第3題的(1)(3)(4),第4題.教學設計七、課堂小結教學設計在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,而不知道將幾個式子聯(lián)系起來看;有些學生則觀察入微,表現(xiàn)出了較強的觀察力.教師要抓住這個契機,適當對學生進行學法指導.對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提.教學反思在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教學目標1.完全平方公式的推導及其應用.2.完全平方公式的幾何解釋.教學目標1.完全平方公式的推導及其應用.重點難點重點完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.難點理解完全平方公式的結構特征,并能靈活應用公式進行計算.重點難點重點教學設計一、復習引入你能列出下列代數(shù)式嗎?(1)兩數(shù)和的平方;(2)兩數(shù)差的平方.你能計算出它們的結果嗎?二、探究新知你能發(fā)現(xiàn)它們的運算形式與結果有什么規(guī)律嗎?引導學生用自己的語言敘述所發(fā)現(xiàn)的規(guī)律,允許學生之間互相補充,教師不急于概括;舉例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教學設計一、復習引入教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構特征.歸納:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2語言敘述:兩個數(shù)的和(或差)的平方,等于它們的平方和,加上(或減去)它們積的2倍.這兩個公式叫做(乘法的)完全平方公式.教師可以在前面的基礎上繼續(xù)鼓勵學生發(fā)現(xiàn)這個公式的一些特點:如公式左、右邊的結構,并嘗試說明產生這些特點的原因.還可以引導學生將(a-b)2的結果用(a+b)2來解釋:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構教學設計教學設計2.教材例4:運用完全平方公式計算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此處可先讓學生獨立思考,然后自主發(fā)言,口述解題思路,可先不給出題目中“運用完全平方公式計算”的要求,允許他們算法的多樣化,但要求明白每種算法的局限和優(yōu)越性.教學設計2.教材例4:運用完全平方公式計算:教學設計四、再探新知1.現(xiàn)有下圖所示三種規(guī)格的卡片各若干張,請你根據(jù)二次三項式a2+2ab+b2,選取相應種類和數(shù)量的卡片,嘗試拼成一個正方形,并討論該正方形的代數(shù)意義:教學設計四、再探新知教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1小題由小組合作共同完成拼圖游戲,比一比哪個小組快?第2小題借助多媒體課件,直觀演示面積的變化,幫助學生聯(lián)想代數(shù)恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1六、鞏固拓展教材例5:運用乘法公式計算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;教學設計六、鞏固拓展教學設計(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教學設計(2)(a+b+c)2教學設計講解此例之前可先讓學生自學教材第111頁的“添括號法則”并完成教材第111頁練習第1題.然后給出例5題目,讓學生思考選擇哪個公式.第(1)小題的解決關鍵是要引導學生比較兩個因式的各項符號,分別找出符號相同及相反的項,學會運用整體思想,將其與公式中的字母a,b對照,其中-2y+3=-(2y-3),故應運用平方差公式.第(2)小題可將任意兩項之和看作一個整體,然后運用完全平方公式.在解此例的過程中,應注意邊辯析各項的符號特征,邊對照兩個公式的結構特征,教師應完整詳細地書寫解題過程,幫助學生理解這一公式的拓展應用,突破難點.教學設計講解此例之前可先讓學生自學教材第111頁的“添括號法則”并完七、課堂小結談一談:你對完全平方公式有了哪些認識?它與平方差公式有什么區(qū)別和聯(lián)系?作業(yè):教材第112頁習題14.2第2題,第3題的(1)(3)(4),第4題.教學設計七、課堂小結教學設計在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,而不知道將幾個式子聯(lián)系起來看;有些學生則觀察入微,表現(xiàn)出了較強的觀察力.教師要抓住這個契機,適當對學生進行學法指導.對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提.教學反思在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教學目標1.完全平方公式的推導及其應用.2.完全平方公式的幾何解釋.教學目標1.完全平方公式的推導及其應用.重點難點重點完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.難點理解完全平方公式的結構特征,并能靈活應用公式進行計算.重點難點重點教學設計一、復習引入你能列出下列代數(shù)式嗎?(1)兩數(shù)和的平方;(2)兩數(shù)差的平方.你能計算出它們的結果嗎?二、探究新知你能發(fā)現(xiàn)它們的運算形式與結果有什么規(guī)律嗎?引導學生用自己的語言敘述所發(fā)現(xiàn)的規(guī)律,允許學生之間互相補充,教師不急于概括;舉例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教學設計一、復習引入教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構特征.歸納:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2語言敘述:兩個數(shù)的和(或差)的平方,等于它們的平方和,加上(或減去)它們積的2倍.這兩個公式叫做(乘法的)完全平方公式.教師可以在前面的基礎上繼續(xù)鼓勵學生發(fā)現(xiàn)這個公式的一些特點:如公式左、右邊的結構,并嘗試說明產生這些特點的原因.還可以引導學生將(a-b)2的結果用(a+b)2來解釋:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構教學設計教學設計2.教材例4:運用完全平方公式計算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此處可先讓學生獨立思考,然后自主發(fā)言,口述解題思路,可先不給出題目中“運用完全平方公式計算”的要求,允許他們算法的多樣化,但要求明白每種算法的局限和優(yōu)越性.教學設計2.教材例4:運用完全平方公式計算:教學設計四、再探新知1.現(xiàn)有下圖所示三種規(guī)格的卡片各若干張,請你根據(jù)二次三項式a2+2ab+b2,選取相應種類和數(shù)量的卡片,嘗試拼成一個正方形,并討論該正方形的代數(shù)意義:教學設計四、再探新知教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1小題由小組合作共同完成拼圖游戲,比一比哪個小組快?第2小題借助多媒體課件,直觀演示面積的變化,幫助學生聯(lián)想代數(shù)恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1六、鞏固拓展教材例5:運用乘法公式計算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.解:(1)(x+2y-3)(x-2y+3)=[x+(2y-3)][x-(2y-3)]=x2-(2y-3)2=x2-(4y2-12y+9)=x2-4y2+12y-9;教學設計六、鞏固拓展教學設計(2)(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc.教學設計(2)(a+b+c)2教學設計講解此例之前可先讓學生自學教材第111頁的“添括號法則”并完成教材第111頁練習第1題.然后給出例5題目,讓學生思考選擇哪個公式.第(1)小題的解決關鍵是要引導學生比較兩個因式的各項符號,分別找出符號相同及相反的項,學會運用整體思想,將其與公式中的字母a,b對照,其中-2y+3=-(2y-3),故應運用平方差公式.第(2)小題可將任意兩項之和看作一個整體,然后運用完全平方公式.在解此例的過程中,應注意邊辯析各項的符號特征,邊對照兩個公式的結構特征,教師應完整詳細地書寫解題過程,幫助學生理解這一公式的拓展應用,突破難點.教學設計講解此例之前可先讓學生自學教材第111頁的“添括號法則”并完七、課堂小結談一談:你對完全平方公式有了哪些認識?它與平方差公式有什么區(qū)別和聯(lián)系?作業(yè):教材第112頁習題14.2第2題,第3題的(1)(3)(4),第4題.教學設計七、課堂小結教學設計在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學生只是側重觀察某個單獨的式子,而不知道將幾個式子聯(lián)系起來看;有些學生則觀察入微,表現(xiàn)出了較強的觀察力.教師要抓住這個契機,適當對學生進行學法指導.對于公式的特點,則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提.教學反思在完全平方公式的探求過程中,學生表現(xiàn)出觀察角度的差異:有些學14.2乘法公式14.2.2完全平方公式14.2乘法公式14.2.2完全平方公式教學目標1.完全平方公式的推導及其應用.2.完全平方公式的幾何解釋.教學目標1.完全平方公式的推導及其應用.重點難點重點完全平方公式的推導過程、結構特點、幾何解釋,靈活應用.難點理解完全平方公式的結構特征,并能靈活應用公式進行計算.重點難點重點教學設計一、復習引入你能列出下列代數(shù)式嗎?(1)兩數(shù)和的平方;(2)兩數(shù)差的平方.你能計算出它們的結果嗎?二、探究新知你能發(fā)現(xiàn)它們的運算形式與結果有什么規(guī)律嗎?引導學生用自己的語言敘述所發(fā)現(xiàn)的規(guī)律,允許學生之間互相補充,教師不急于概括;舉例:(1)(p+1)2=(p+1)(p+1)=________________;(2)(p-1)2=(p-1)(p-1)=________________;(3)(m+2)2=________________;(4)(m-2)2=________________.教學設計一、復習引入教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構特征.歸納:公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2語言敘述:兩個數(shù)的和(或差)的平方,等于它們的平方和,加上(或減去)它們積的2倍.這兩個公式叫做(乘法的)完全平方公式.教師可以在前面的基礎上繼續(xù)鼓勵學生發(fā)現(xiàn)這個公式的一些特點:如公式左、右邊的結構,并嘗試說明產生這些特點的原因.還可以引導學生將(a-b)2的結果用(a+b)2來解釋:(a-b)2=[a+(-b)]2=a2+2a(-b)+(-b)2=a2-2ab+b2.教學設計通過幾個這樣的運算例子,讓學生觀察算式與結果間的結構教學設計教學設計2.教材例4:運用完全平方公式計算:(1)1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404;(2)992=(100-1)2=1002-2×100×1+12=10000-200+1=9801.此處可先讓學生獨立思考,然后自主發(fā)言,口述解題思路,可先不給出題目中“運用完全平方公式計算”的要求,允許他們算法的多樣化,但要求明白每種算法的局限和優(yōu)越性.教學設計2.教材例4:運用完全平方公式計算:教學設計四、再探新知1.現(xiàn)有下圖所示三種規(guī)格的卡片各若干張,請你根據(jù)二次三項式a2+2ab+b2,選取相應種類和數(shù)量的卡片,嘗試拼成一個正方形,并討論該正方形的代數(shù)意義:教學設計四、再探新知教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1小題由小組合作共同完成拼圖游戲,比一比哪個小組快?第2小題借助多媒體課件,直觀演示面積的變化,幫助學生聯(lián)想代數(shù)恒等式:(a-b)2=a2-b2-2b(a-b)=a2-2ab+b2.教學設計2.你能根據(jù)下圖說明(a-b)2=a2-2ab+b2嗎?第1六、鞏固拓展教材例5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 如何制定購銷合同協(xié)議書
- 商場石材保養(yǎng)合同協(xié)議書
- 表白策劃工作室創(chuàng)業(yè)計劃書
- 報告2025年智能型低壓電器、智能型低壓開關柜項目可行性研究
- 兒童書店開業(yè)營銷策劃方案
- 服務尾款合同結算協(xié)議書
- 犬五聯(lián)用血清用量-早期應大量應用高免血清
- 廠房清工合同協(xié)議書范本
- 2025年中國肉桂酸鉀項目投資計劃書
- 豬常見傳染病的預防措施
- 浙教版八年級科學第四章電學測試
- 機電顧問服務建議書123
- 廣西壯族自治區(qū)工程造價綜合定額答疑匯編2022年11月更新
- 科學發(fā)展觀基本解讀(完整版)課件
- 基坑工程施工驗收記錄表
- 夜間施工專項方案
- 微生物實驗室病原微生物評估報告
- 護理風險管理與護理安全
- 綜采工作面液壓支架壓死救活技術研究
- 行政單位會計實習報告(共36頁)
- 主體結構監(jiān)理實施細則范本
評論
0/150
提交評論