版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023學(xué)年高考數(shù)學(xué)模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.記其中表示不大于x的最大整數(shù),若方程在在有7個不同的實數(shù)根,則實數(shù)k的取值范圍()A. B. C. D.3.設(shè),均為非零的平面向量,則“存在負數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件4.已知角的終邊經(jīng)過點P(),則sin()=A. B. C. D.5.某個小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1406.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.設(shè)實數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.148.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.9.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個單位 B.向左平移個單位C.向右平移個單位 D.向右平移個單位10.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.11.甲乙兩人有三個不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個學(xué)習(xí)小組,則兩人參加同一個小組的概率為()A.B.C.D.12.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前n項和為,,,則=_______.14.已知為等差數(shù)列,為其前n項和,若,,則_______.15.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.16.函數(shù)的定義域為,其圖象如圖所示.函數(shù)是定義域為的奇函數(shù),滿足,且當(dāng)時,.給出下列三個結(jié)論:①;②函數(shù)在內(nèi)有且僅有個零點;③不等式的解集為.其中,正確結(jié)論的序號是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.18.(12分)已知的三個內(nèi)角所對的邊分別為,向量,,且.(1)求角的大?。唬?)若,求的值19.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.20.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a21.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.22.(10分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【題目詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時等號成立.故焦距的最小值為.故選:D【答案點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.2、D【答案解析】
做出函數(shù)的圖象,問題轉(zhuǎn)化為函數(shù)的圖象在有7個交點,而函數(shù)在上有3個交點,則在上有4個不同的交點,數(shù)形結(jié)合即可求解.【題目詳解】作出函數(shù)的圖象如圖所示,由圖可知方程在上有3個不同的實數(shù)根,則在上有4個不同的實數(shù)根,當(dāng)直線經(jīng)過時,;當(dāng)直線經(jīng)過時,,可知當(dāng)時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數(shù)根.故選:D.【答案點睛】本題考查方程根的個數(shù)求參數(shù),利用函數(shù)零點和方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點是解題的關(guān)鍵,運用數(shù)形結(jié)合是解決函數(shù)零點問題的基本思想,屬于中檔題.3、B【答案解析】
根據(jù)充分條件、必要條件的定義進行分析、判斷后可得結(jié)論.【題目詳解】因為,均為非零的平面向量,存在負數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負數(shù),使得”是“”的充分不必要條件.故選B.【答案點睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.4、A【答案解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.5、C【答案解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C6、C【答案解析】
化簡得到,得到答案.【題目詳解】,故,對應(yīng)點在第三象限.故選:.【答案點睛】本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學(xué)生的計算能力.7、D【答案解析】
做出滿足條件的可行域,根據(jù)圖形即可求解.【題目詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標函數(shù)過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【答案點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.8、A【答案解析】
構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【題目詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,,所以,所以.由得,所以,故不等式的解集為.故選:A【答案點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、A【答案解析】
運用輔助角公式將兩個函數(shù)公式進行變形得以及,按四個選項分別對變形,整理后與對比,從而可選出正確答案.【題目詳解】解:.對于A:可得.故選:A.【答案點睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯點有兩個,一個是混淆了已知函數(shù)和目標函數(shù);二是在平移時,忘記乘了自變量前的系數(shù).10、D【答案解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【題目詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【答案點睛】本題主要考查函數(shù)的圖象的綜合應(yīng)用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平.11、A【答案解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.12、D【答案解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【題目詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【答案點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
利用求出公差,結(jié)合等差數(shù)列的通項公式可求.【題目詳解】設(shè)公差為,因為,所以,即.所以.故答案為:【答案點睛】本題主要考查等差數(shù)列通項公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).14、1【答案解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以.故答案為1.【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關(guān)于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應(yīng)用.15、1【答案解析】
利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個對稱中心與一個對稱軸的距離為,進而求解即可.【題目詳解】由題,,因為,,且的最小值等于,即相鄰的一個對稱中心與一個對稱軸的距離為,所以,即,所以,故答案為:1【答案點睛】本題考查正弦型函數(shù)的對稱性的應(yīng)用,考查三角函數(shù)的化簡.16、①③【答案解析】
利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進而可判斷函數(shù)在內(nèi)的零點個數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【題目詳解】因為函數(shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點為和.因為函數(shù)的周期為,所以函數(shù)在內(nèi)有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【答案點睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點等知識點,考查學(xué)生分析問題的能力和數(shù)形結(jié)合能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見解析.【答案解析】
(1)由的正負可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時,取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點坐標后,可得到切線方程;(3)由極值點的定義可知是的兩個不等正根,由判別式大于零得到的取值范圍,同時得到韋達定理的形式;化簡為,結(jié)合的范圍可證得結(jié)論.【題目詳解】(1)由題意得:的定義域為,當(dāng)時,,,當(dāng)和時,;當(dāng)時,,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時取等號),切線的斜率存在最小值,,解得:,,即切點為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個不等正根.則,解得:,且,.,,,即不等式成立.【答案點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識;本題中證明不等式的關(guān)鍵是能夠通過極值點的定義將問題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗栴}.18、(1)(2)【答案解析】
利用平面向量數(shù)量積的坐標表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進而求出,利用兩角差的正弦公式求解即可.【題目詳解】由題意得,,由二倍角的余弦公式可得,,又因為,所以,解得或,∵,∴.在中,由余弦定理得,即①又因為,把代入①整理得,,解得,,所以為等邊三角形,,∴,即.【答案點睛】本題考查利用平面向量數(shù)量積的坐標表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19、(1)(2)見解析(3)見解析【答案解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當(dāng)時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等的正數(shù)根,所以或解得或無解,所以的取值范圍,可得,由題意知,令,則.而當(dāng)時,,即,所以在上單調(diào)遞減,所以即時,.(Ⅲ)因為,.令得,.由(Ⅱ)知時,的對稱軸,,,所以.又,可得,此時,在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,所以最多只有三個不同的零點.又因為,所以在上遞增,即時,恒成立.根據(jù)(2)可知且,所以,即,所以,使得.由,得,又,,所以恰有三個不同的零點:,1,.綜上所述,恰有三個不同的零點.【答案點睛】利用賦值法求出關(guān)系,利用函數(shù)導(dǎo)數(shù),研究函數(shù)的單調(diào)性,要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,利用函數(shù)的導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù)是近年高考壓軸題的熱點.20、(I)an=2n-1,bn=【答案解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【題目詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【答案點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.21、(1),表示圓心為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《密封件基礎(chǔ)知識》課件
- 2024年貴州建設(shè)職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫標準卷
- 單位管理制度集合大全人事管理十篇
- 單位管理制度匯編大全人事管理
- 單位管理制度合并匯編【人員管理】
- 單位管理制度呈現(xiàn)匯編職工管理篇十篇
- 單位管理制度呈現(xiàn)大全人員管理
- 《礦山勞動衛(wèi)生》課件
- 《生活中的問題》課件
- 《安全防護欄標準》課件
- “雙減”背景下小學(xué)數(shù)學(xué)“教、學(xué)、評”一體化的思考與實踐
- 中外美術(shù)評析與欣賞智慧樹知到期末考試答案章節(jié)答案2024年湖南大學(xué)
- 事業(yè)單位考試《綜合知識和能力測試》試卷
- 福利住房與購房補貼制度
- 康師傅烏龍茗茶營銷策劃書
- 【川教版】《生命 生態(tài) 安全》四上第13課《預(yù)防凍瘡》課件
- 工廠籌建方案
- UPVC管道安裝施工方法
- 河南省鄭州高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)2023-2024學(xué)年三年級上學(xué)期1月期末科學(xué)試題
- 女裝行業(yè)退貨率分析
- 計算機基礎(chǔ)理論-進制的概念及換算試題及答案
評論
0/150
提交評論