山東省文登市大水泊中學(xué)2023學(xué)年高考數(shù)學(xué)五模試卷(含解析)_第1頁
山東省文登市大水泊中學(xué)2023學(xué)年高考數(shù)學(xué)五模試卷(含解析)_第2頁
山東省文登市大水泊中學(xué)2023學(xué)年高考數(shù)學(xué)五模試卷(含解析)_第3頁
山東省文登市大水泊中學(xué)2023學(xué)年高考數(shù)學(xué)五模試卷(含解析)_第4頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù),,的部分圖象如圖所示,則函數(shù)表達(dá)式為()A. B.C. D.2.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.3.五行學(xué)說是華夏民族創(chuàng)造的哲學(xué)思想,是華夏文明重要組成部分.古人認(rèn)為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關(guān)系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.4.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于5.已知是虛數(shù)單位,若,則()A. B.2 C. D.36.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.7.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.8.已知為實(shí)數(shù)集,,,則()A. B. C. D.9.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則()A. B.2 C.3 D.10.在展開式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.711.雙曲線x2a2A.y=±2x B.y=±3x12.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是由一個(gè)棱柱挖去一個(gè)棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.32二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.14.某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為,現(xiàn)按年級(jí)采用分層抽樣的方法抽取若干人,若抽取的高三年級(jí)為12人,則抽取的樣本容量為________人.15.設(shè)是公差不為0的等差數(shù)列的前項(xiàng)和,且,則______.16.滿足約束條件的目標(biāo)函數(shù)的最小值是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線與拋物線交于兩點(diǎn).(1)當(dāng)點(diǎn)的橫坐標(biāo)之和為4時(shí),求直線的斜率;(2)已知點(diǎn),直線過點(diǎn),記直線的斜率分別為,當(dāng)取最大值時(shí),求直線的方程.18.(12分)設(shè)函數(shù).(1)若,求實(shí)數(shù)的取值范圍;(2)證明:,恒成立.19.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點(diǎn)的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對(duì)的邊分別是,若點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心,且,求面積的最大值.20.(12分)如圖,在正四棱錐中,,點(diǎn)、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長(zhǎng).21.(12分)某商場(chǎng)以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計(jì),顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場(chǎng)銷售一件該商品,若顧客選擇分2期付款,則商場(chǎng)獲得利潤(rùn)l00元,若顧客選擇分3期付款,則商場(chǎng)獲得利潤(rùn)150元,若顧客選擇分4期付款,則商場(chǎng)獲得利潤(rùn)200元.商場(chǎng)銷售兩件該商品所獲的利潤(rùn)記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數(shù)學(xué)期望的最大值.22.(10分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)

2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【答案解析】

根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點(diǎn)求出,化簡(jiǎn)即得所求.【題目詳解】由圖像知,,,解得,因?yàn)楹瘮?shù)過點(diǎn),所以,,即,解得,因?yàn)椋裕?故選:A【答案點(diǎn)睛】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.2、D【答案解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.3、A【答案解析】

列舉出金、木、水、火、土任取兩個(gè)的所有結(jié)果共10種,其中2類元素相生的結(jié)果有5種,再根據(jù)古典概型概率公式可得結(jié)果.【題目詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結(jié)果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結(jié)果,所以2類元素相生的概率為,故選A.【答案點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時(shí),找準(zhǔn)基本事件個(gè)數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個(gè)數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個(gè)數(shù)時(shí),一定要按順序逐個(gè)寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.4、D【答案解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論.5、A【答案解析】

直接將兩邊同時(shí)乘以求出復(fù)數(shù),再求其模即可.【題目詳解】解:將兩邊同時(shí)乘以,得故選:A【答案點(diǎn)睛】考查復(fù)數(shù)的運(yùn)算及其模的求法,是基礎(chǔ)題.6、A【答案解析】

由題先畫出基本圖形,結(jié)合向量加法和點(diǎn)乘運(yùn)算化簡(jiǎn)可得,結(jié)合的范圍即可求解【題目詳解】如圖,其中,所以.故選:A【答案點(diǎn)睛】本題考查向量的線性運(yùn)算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題7、A【答案解析】

推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【題目詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【答案點(diǎn)睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.8、C【答案解析】

求出集合,,,由此能求出.【題目詳解】為實(shí)數(shù)集,,,或,.故選:.【答案點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9、A【答案解析】

由奇函數(shù)定義求出和.【題目詳解】因?yàn)槭嵌x在上的奇函數(shù),.又當(dāng)時(shí),,.故選:A.【答案點(diǎn)睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.10、D【答案解析】

求出展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問題得解?!绢}目詳解】展開項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開式中的常數(shù)項(xiàng)為:.故選:D【答案點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。11、A【答案解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a212、B【答案解析】

由三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,利用體積公式,即可求解。【題目詳解】由題意,幾何體的三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!敬鸢更c(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實(shí)線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對(duì)題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.14、【答案解析】

根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【題目詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【答案點(diǎn)睛】本題考查了分層抽樣的知識(shí),算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.15、18【答案解析】

先由,可得,再結(jié)合等差數(shù)列的前項(xiàng)和公式求解即可.【題目詳解】解:因?yàn)椋裕?故答案為:18.【答案點(diǎn)睛】本題考查了等差數(shù)列基本量的運(yùn)算,重點(diǎn)考查了等差數(shù)列的前項(xiàng)和公式,屬基礎(chǔ)題.16、-2【答案解析】

可行域是如圖的菱形ABCD,代入計(jì)算,知為最小.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【答案解析】

(1)設(shè),根據(jù)直線的斜率公式即可求解;(2)設(shè)直線的方程為,聯(lián)立直線與拋物線方程,由韋達(dá)定理得,,結(jié)合直線的斜率公式得到,換元后討論的符號(hào),求最值可求解.【題目詳解】(1)設(shè),因?yàn)?,即直線的斜率為1.(2)顯然直線的斜率存在,設(shè)直線的方程為.聯(lián)立方程組,可得則,令,則則當(dāng)時(shí),;當(dāng)且僅當(dāng),即時(shí),解得時(shí),取“=”號(hào),當(dāng)時(shí),;當(dāng)時(shí),綜上所述,當(dāng)時(shí),取得最大值,此時(shí)直線的方程是.【答案點(diǎn)睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關(guān)系,換元法,均值不等式,考查了運(yùn)算能力,屬于難題.18、(1)(2)證明見解析【答案解析】

(1)將不等式化為,利用零點(diǎn)分段法,求得不等式的解集.(2)將要證明的不等式轉(zhuǎn)化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對(duì)值不等式和基本不等式,證得上式成立.【題目詳解】(1)∵,∴,即當(dāng)時(shí),不等式化為,∴當(dāng)時(shí),不等式化為,此時(shí)無解當(dāng)時(shí),不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【答案點(diǎn)睛】本題考查絕對(duì)值不等式的性質(zhì)、解法,基本不等式等知識(shí);考查推理論證能力、運(yùn)算求解能力;考查化歸與轉(zhuǎn)化,分類與整合思想.19、(Ⅰ)3;(Ⅱ).【答案解析】

(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡(jiǎn)即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【題目詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.【答案點(diǎn)睛】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運(yùn)算求解能力,屬于中檔基礎(chǔ)題.20、(1)證明見解析;(2).【答案解析】試題分析:由于圖形是正四棱錐,因此設(shè)AC、BD交點(diǎn)為O,則以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設(shè)=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補(bǔ)可求得.試題解析:(1)連結(jié)AC、BD交于點(diǎn)O,以O(shè)A為x軸正方向,以O(shè)B為y軸正方向,OP為z軸正方向建立空間直角坐標(biāo)系.因?yàn)镻A=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因?yàn)椋?,所以MN⊥AD(2)解:因?yàn)镸在PA上,可設(shè)=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設(shè)平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可?。?λ-1,0,λ).因?yàn)槠矫鍭BD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點(diǎn):用空間向量法證垂直、求二面角.21、(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數(shù)學(xué)期望的最大值為280【答案解析】

(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨(dú)立重復(fù)事件的特點(diǎn)得出,利用二項(xiàng)分布的概率公式,即可求出結(jié)果;(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【題目詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論