版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第1章隨機(jī)事件及其概率(1)排列從m個人中挑出n個人進(jìn)行排列的可能數(shù)。組合公式從m個人中挑出n個人進(jìn)行組合的可能數(shù)。加法原理(兩種方法均能完成此事):m+n某件事由兩種方法來完成,第一種方法可由m種方法完成,第二種方(2)加法法可由n種方法來完成,則這件事可由m+n種方法來完成。和乘法原理乘法原理(兩個步驟分別不能完成這件事):m×n某件事由兩個步驟來完成,第一個步驟可由m種方法完成,第二個步驟可由n種方法來完成,則這件事可由m×n種方法來完成。(3)一些重復(fù)排列和非重復(fù)排列(有序)對立事件(至少有一個)常見排列順序問題(4)隨機(jī)如果一個試驗(yàn)在相同條件下可以重復(fù)進(jìn)行,而每次試驗(yàn)的可能結(jié)果不止一個,但在進(jìn)行一次試驗(yàn)之前卻不能斷言它出現(xiàn)哪個結(jié)果,則稱這試驗(yàn)和隨機(jī)種試驗(yàn)為隨機(jī)試驗(yàn)。事件試驗(yàn)的可能結(jié)果稱為隨機(jī)事件。在一個試驗(yàn)下,不管事件有多少個,總可以從其中找出這樣一組事件,它具有如下性質(zhì):①每進(jìn)行一次試驗(yàn),必須發(fā)生且只能發(fā)生這一組中的一個事件;②任何事件,都是由這一組中的部分事件組成的。這樣一組事件中的每一個事件稱為基本事件,用來表示。(5)基本基本事件的全體,稱為試驗(yàn)的樣本空間,用表示。事件、樣本一個事件就是由中的部分點(diǎn)(基本事件)組成的集合。通常用大空間和事件寫字母A,B,C,…表示事件,它們是的子集。為必然事件,?為不可能事件。不可能事件(?)的概率為零,而概率為零的事件不一定是不可能事件;同理,必然事件(Ω)的概率為1,而概率為1的事件也不一定是必然事件。(6)事件①關(guān)系:的關(guān)系與運(yùn)如果事件A的組成部分也是事件B的組成部分,(A發(fā)生必有事件B發(fā)算生):如果同時有,,則稱事件A與事件B等價,或稱A等于B:A=B。A、B中至少有一個發(fā)生的事件:AB,或者A+B。屬于A而不屬于B的部分所構(gòu)成的事件,稱為A與B的差,記為A-B,也可表示為A-AB或者,它表示A發(fā)生而B不發(fā)生的事件。A、B同時發(fā)生:AB,或者AB。AB=?,則表示A與B不可能同時發(fā)生,稱事件A與事件B互不相容或者互斥?;臼录腔ゲ幌嗳莸?。-A稱為事件A的逆事件,或稱A的對立事件,記為。它表示A不發(fā)生的事件?;コ馕幢貙α?。②運(yùn)算:結(jié)合率:A(BC)=(AB)CA(BC)=(AB)C分配率:(AB)C=(AC)∩(BC)(AB)∩C=(AC)(BC)德摩根率:,設(shè)為樣本空間,為事件,對每一個事件都有一個實(shí)數(shù)P(A),若滿足下列三個條件:1°0≤P(A)≤1,(7)概率2°P(Ω)=1的公理化定義3°對于兩兩互不相容的事件,,…有常稱為可列(完全)可加性。則稱P(A)為事件的概率。1°,2°。(8)古典設(shè)任一事件,它是由組成的,則有概型P(A)==若隨機(jī)試驗(yàn)的結(jié)果為無限不可數(shù)并且每個結(jié)果出現(xiàn)的可能性均勻,同(9)幾何此隨機(jī)試驗(yàn)為幾何概型。對任一事件時樣本空間中的每一個基本事件可以使用一個有界區(qū)域來描述,則稱A,概型。其中L為幾何度量(長度、面積、體積)。(10)加法P(A+B)=P(A)+P(B)-P(AB)當(dāng)P(AB)=0時,P(A+B)=P(A)+P(B)公式P(A-B)=P(A)-P(AB)(11)減法當(dāng)BA時,P(A-B)=P(A)-P(B)公式當(dāng)A=Ω時,P()=1-P(B)定義設(shè)A、B是兩個事件,且P(A)>0,則稱件下,事件B發(fā)生的條件概率,記為為事件A發(fā)生條(12)條件概率。條件概率是概率的一種,所有概率的性質(zhì)都適合于條件概率。例如P(Ω/B)=1P(/A)=1-P(B/A)(13)乘法乘法公式:公式更一般地,對事件A1,A2,…An,若P(A1A2…An-1)>0,則有…………。①兩個事件的獨(dú)立性設(shè)事件、滿足的。,則稱事件、是相互獨(dú)立,則有若事件、相互獨(dú)立,且若事件、相互獨(dú)立,則可得到與、與、與也都相互(14)獨(dú)立獨(dú)立。性必然事件和不可能事件?與任何事件都相互獨(dú)立。?與任何事件都互斥。②多個事件的獨(dú)立性設(shè)ABC是三個事件,如果滿足兩兩獨(dú)立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時滿足P(ABC)=P(A)P(B)P(C)那么A、B、C相互獨(dú)立。對于n個事件類似。設(shè)事件1°滿足兩兩互不相容,,(15)全概2°,公式則有。設(shè)事件,,…,及滿足1°,,…,兩兩互不相容,>0,1,2,…,,2°,,則(16)貝葉斯公式,i=1,2,…n。,,…,),通常叫先驗(yàn)概率。此公式即為貝葉斯公式。,(,(,,…,),通常稱為后驗(yàn)概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。我們作了次試驗(yàn),且滿足每次試驗(yàn)只有兩種可能結(jié)果,發(fā)生或不發(fā)生;次試驗(yàn)是重復(fù)進(jìn)行的,即發(fā)生的概率每次均一樣;每次試驗(yàn)是獨(dú)立的,即每次試驗(yàn)發(fā)生與否與其他次試驗(yàn)發(fā)生與否是互不影響的。(17)伯努利概型這種試驗(yàn)稱為伯努利概型,或稱為重伯努利試驗(yàn)。用表示每次試驗(yàn)發(fā)生的概率,則發(fā)生的概率為,用第二章隨機(jī)變量及其分布(1)離散型設(shè)離散型隨機(jī)變量的可能取值為Xk(k1,2,…)且取各個值的概率,隨機(jī)變量的即事件(X=X)的概率為kP(X=xk)=pk,k=1,2,…,分布律則稱上式為離散型隨機(jī)變量的形式給出:的概率分布或分布律。有時也用分布列。顯然分布律應(yīng)滿足下列條件:(1)(2)連續(xù)型設(shè),是隨機(jī)變量,(2)的分布函數(shù),若存在非負(fù)函數(shù)。,對任意實(shí)數(shù)隨機(jī)變量的,有分布密度,則稱為連續(xù)型隨機(jī)變量。稱為的概率密度函數(shù)或密度函數(shù),簡稱概率密度。密度函數(shù)具有下面4個性質(zhì):1°。2°。(3)離散與連續(xù)型隨機(jī)積分元在離散型隨機(jī)變量理論中所起的作用相類似。在連續(xù)型隨機(jī)變量理論中所起的作用與變量的關(guān)系(4)分布函設(shè)為隨機(jī)變量,是任意實(shí)數(shù),則函數(shù)數(shù)稱為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個累積函數(shù)。可以得到X落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(–∞,x]內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1°2°;是單調(diào)不減的函數(shù),即時,有;;3°4°5°,,即是右連續(xù)的;。對于離散型隨機(jī)變量,;對于連續(xù)型隨機(jī)變量,(5)八大分0-1分布。P(X=1)=p,P(X=0)=q布二項(xiàng)分布泊松分布在重貝努里試驗(yàn)中,設(shè)事件是隨機(jī)變量,設(shè)為,則可能取值為發(fā)生的概率為。事件。發(fā)生的次數(shù),,其中則稱隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布。記為。當(dāng)時,,,這就是(0-1)分布,所以(0-1)分布是二項(xiàng)分布的特例。設(shè)隨機(jī)變量的分布律為,,,則稱隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項(xiàng)分布的極限分布(np=λ,n→∞)。超幾何分布幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。,其中p≥0,q=1-p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設(shè)隨機(jī)變量的值只落在[a,b]內(nèi),其密度函數(shù)在[a,b]上為常數(shù),即a≤x≤b其他,在[a,b]上服從均勻分布,記為X~U(a,b)。則稱隨機(jī)變量分布函數(shù)為a≤x≤b0,x<a,1,x>b。當(dāng)a≤x1<x2≤b時,X落在區(qū)間()內(nèi)的概率為。指數(shù)分布,0,,其中,則稱隨機(jī)變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為,x<0。記住積分公式:正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為,,第三章二維隨機(jī)變量及其分布(1)聯(lián)合分離散型布如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個有序?qū)Γ▁,y),則稱為離散型隨機(jī)量。設(shè)=(X,Y)的所有可能取值為,且事件{=}的概率為pij,,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時也用下面的概率分布表來表示:YXy1y2………yj………x1x2p11p21p12p22p1jp2jxipi1……這里pij具有下面兩個性質(zhì):(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對任意一個其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D={(X,Y)|a<x<b,c<y<d}有則稱為連續(xù)型隨機(jī)向量;并稱f(x,y)為=(X,Y)的分布密度或稱為X和Y的聯(lián)合分布密度。分布密度f(x,y)具有下面兩個性質(zhì):(1)f(x,y)≥0;(2)(2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分設(shè)(X,Y)為二維隨機(jī)變量,對于任意實(shí)數(shù)x,y,二元函數(shù)布函數(shù)稱為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。分布函數(shù)是一個以全平面為其定義域,以事件的概率為函數(shù)值的一個實(shí)值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對x和y是非減的,即當(dāng)x2>x1時,有F(x2,y)≥F(x1,y);當(dāng)y2>y1時,有F(x,y2)≥F(x,y1);(3)F(x,y)分別對x和y是右連續(xù)的,即(4)(5)對于.(4)離散型與連續(xù)型的關(guān)系(5)邊緣分離散型布X的邊緣分布為Y的邊緣分布為;。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分離散型布在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨(dú)立性一般型F(X,Y)=FX(x)FY(y)離散型有零不獨(dú)立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:①可分離變量②正概率密度區(qū)間為矩形二維正態(tài)分布=0隨機(jī)變量的若X1,X2,…Xm,Xm+1,…Xn相互獨(dú)立,h,g為連續(xù)函數(shù),則:函數(shù)h(X1,X2,…Xm)和g(Xm+1,…Xn)相互獨(dú)立。特例:若X與Y獨(dú)立,則:h(X)和g(Y)獨(dú)立。例如:若X與Y獨(dú)立,則:3X+1和5Y-2獨(dú)立。(8)二維均勻分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中SD為區(qū)域D的面積,則稱(X,Y)服從D上的均勻分布,記為(X,Y)~U(D)。例如圖3.1、圖3.2和圖3.3。y1D1O1x圖3.1y1O2x圖3.2ydcOabx圖3.3(9)二維正設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為態(tài)分布其中是5個參數(shù),則稱(X,Y)服從二維正態(tài)分布,記為(X,Y)~N(由邊緣密度的計(jì)算公式,可以推出二維正態(tài)分布的兩個邊緣分布仍為正態(tài)分布,即X~N(但是若X~N(,(X,Y)未必是二維正態(tài)分布。布。(10)函數(shù)Z=X+Y分布根據(jù)定義計(jì)算:對于連續(xù)型,fZ(z)=兩個獨(dú)立的正態(tài)分布的和仍為正態(tài)分布()。n個相互獨(dú)立的正態(tài)分布的線性組合,仍服從正態(tài)分布。,Z=max,min(X1,X2,…Xn)若相互獨(dú)立,其分布函數(shù)分別為,則Z=max,min(X1,X2,…Xn)的分布函數(shù)為:分布設(shè)n個隨機(jī)變量相互獨(dú)立,且服從標(biāo)準(zhǔn)正態(tài)分布,可以證明它們的平方和的分布密度為我們稱隨機(jī)變量W服從自由度為n的分布,記為W~,其中所謂自由度是指獨(dú)立正態(tài)隨機(jī)變量的個數(shù),它是隨機(jī)變量分布中的一個重要參數(shù)。分布滿足可加性:設(shè)第四章隨機(jī)變量的數(shù)字特征(1)一維隨機(jī)變量的數(shù)離散型連續(xù)型字特征期望期望就是平均值設(shè)X是連續(xù)型隨機(jī)變量,其概率密度為f(x),設(shè)X是離散型隨機(jī)變量,其分布律為P()=pk,k=1,2,…,n,(要求絕對收斂)(要求絕對收斂)函數(shù)的期望Y=g(X)Y=g(X)方差D(X)=E[X-E(X)]2,標(biāo)準(zhǔn)差,矩①對于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點(diǎn)矩,記為vk,即①對于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點(diǎn)矩,記為vk,即νk=E(Xk)=②對于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記,k=1,2,….νk=E(Xk)=k=1,2,….為,即②對于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=,k=1,2,….=k=1,2,….切比雪夫不等式設(shè)隨機(jī)變量X具有數(shù)學(xué)期望E(X)=μ,方差D(X)=σ2,則對于任意正數(shù)ε,有下列切比雪夫不等式切比雪夫不等式給出了在未知X的分布的情況下,對概率的一種估計(jì),它在理論上有重要意義。(1)E(C)=C(2)期望的性質(zhì)(2)E(CX)=CE(X)(3)E(X+Y)=E(X)+E(Y),(4)E(XY)=E(X)E(Y),充分條件:X和Y獨(dú)立;充要條件:X和Y不相關(guān)。(3)方差的性質(zhì)(1)D(C)=0;E(C)=C(2)D(aX)=a2D(X);E(aX)=aE(X)(3)D(aX+b)=a2D(X);E(aX+b)=aE(X)+b(4)D(X)=E(X2)-E2(X)(5)D(X±Y)=D(X)+D(Y),充分條件:X和Y獨(dú)立;充要條件:X和Y不相關(guān)。D(X±Y)=D(X)+D(Y)±2E[(X-E(X))(Y-E(Y))],無條件成立。而E(X+Y)=E(X)+E(Y),無條件成立。(4)常見分布的期望和方差期望方差0-1分布二項(xiàng)分布泊松分布pnp幾何分布超幾何分布均勻分布指數(shù)分布正態(tài)分布n02nt分布(n>2)(5)二維隨機(jī)變量的數(shù)期望字特征函數(shù)的期望方差==協(xié)方差對于隨機(jī)變量X與Y,稱它們的二階混合中心矩為X與Y的協(xié)方差或相關(guān)矩,記為,即與記號相對應(yīng),X與Y的方差D(X)與D(Y)也可分別記為與。相關(guān)系數(shù)對于隨機(jī)變量X與Y,如果D(X)>0,D(Y)>0,則稱為X與Y的相關(guān)系數(shù),記作(有時可簡記為)。||≤1,當(dāng)||=1時,稱X與Y完全相關(guān):(6)(i)cov(X,Y)=cov(Y,X);(ii)cov(aX,bY)=abcov(X,Y);(iii)cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y);(iv)cov(X,Y)=E(XY)-E(X)E(Y).協(xié)方差的性質(zhì)(獨(dú)立和7)(i)若隨機(jī)變量X與Y相互獨(dú)立,則不相關(guān)(ii)若(X,Y)~N(;反之不真。),則X與Y相互獨(dú)立的充要條件是X和Y不相關(guān)。第五章大數(shù)定律和中心極限定理(1)大數(shù)定律切比雪夫大數(shù)定律設(shè)隨機(jī)變量X1,X2,…相互獨(dú)立,均具有有限方差,且被同一常數(shù)C所界:D(Xi)<C(i=1,2,…),則對于任意的正數(shù)ε,有特殊情形:若X1,X2,…具有相同的數(shù)學(xué)期望E(XI)=μ,則上式成為伯努利大數(shù)定律設(shè)μ是n次獨(dú)立試驗(yàn)中事件A發(fā)生的次數(shù),p是事件A在每次試驗(yàn)中發(fā)生的概率,則對于任意的正數(shù)ε,有伯努利大數(shù)定律說明,當(dāng)試驗(yàn)次數(shù)n很大時,事件A發(fā)生的頻率與概率有較大判別的可能性很小,即這就以嚴(yán)格的數(shù)學(xué)形式描述了頻率的穩(wěn)定性。辛欽大數(shù)定律設(shè)X1,X2,…,Xn,…是相互獨(dú)立同分布的隨機(jī)變量序列,且E(Xn)=μ,則對于任意的正數(shù)ε有(2)中心極限定列維-林德伯格定理理設(shè)隨機(jī)變量X1,X2,…相互獨(dú)立,服從同一分布,且具有相同的數(shù)學(xué)期望和方差:,則隨機(jī)變量的分布函數(shù)Fn(x)對任意的實(shí)數(shù)x,有此定理也稱為獨(dú)立同分布的中心極限定理。棣莫弗-拉普拉斯定理設(shè)隨機(jī)變量實(shí)數(shù)x,有為具有參數(shù)n,p(0<p<1)的二項(xiàng)分布,則對于任意(3)二項(xiàng)定理(4)泊松定理若當(dāng),則超幾何分布的極限分布為二項(xiàng)分布。若當(dāng),則第六章樣本及抽樣分布(1)數(shù)理統(tǒng)計(jì)的基本概念總體在數(shù)理統(tǒng)計(jì)中,常把被考察對象的某一個(或多個)指標(biāo)的全體稱為總體(或母體)。我們總是把總體看成一個具有分布的隨機(jī)變量(或隨機(jī)向量)。個體樣本總體中的每一個單元稱為樣品(或個體)。我們把從總體中抽取的部分樣品稱為樣本。樣本中所含的樣品數(shù)稱為樣本容量,一般用n表示。在一般情況下,總是把樣本看成是n個相互獨(dú)立的且與總體有相同分布的隨機(jī)變量,這樣的樣本稱為簡單隨機(jī)樣本。在泛指任一次抽取的結(jié)果時,表示n個隨機(jī)變量(樣本);在具體的一次抽取之后,表示n個具體的數(shù)值(樣本值)。我們稱之為樣本的兩重性。樣本函數(shù)和統(tǒng)計(jì)量設(shè)為總體的一個樣本,稱()為樣本函數(shù),其中為一個連續(xù)函數(shù)。如果中不包含任何未知參數(shù),則稱()為一個統(tǒng)計(jì)量。常見統(tǒng)計(jì)量及其性質(zhì)樣本均值樣本方差樣本標(biāo)準(zhǔn)差樣本k階原點(diǎn)矩樣本k階中心矩,,,,其中(2)正態(tài)總體下的四大分正態(tài)分布布,為二階中心矩。設(shè)本函數(shù)為來自正態(tài)總體的一個樣本,則樣t分布設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)的一個樣本,則樣本函數(shù)其中t(n-1)表示自由度為n-1的t分布。設(shè)為來自正態(tài)總體其中表示自由度為n-1的分布。F分布設(shè)為來自正態(tài)總體為來自正態(tài)總體的一個樣本,而的一個樣本,則樣本函數(shù)其中表示第一自由度為,第二自由度為的F分布。(3)正態(tài)總體下分布的性質(zhì)與獨(dú)立。極大似然估計(jì)當(dāng)總體X為連續(xù)型隨機(jī)變量時,設(shè)其分布密度為,其中為未知參數(shù)。又設(shè)為總體的一個樣本,稱為樣本的似然函數(shù),簡記為Ln.當(dāng)總體X為離型隨機(jī)變量時,設(shè)其分布律為,則稱為樣本的似然函數(shù)。若似然函數(shù)在處取到最大值,則稱大似然估計(jì)值,相應(yīng)的統(tǒng)計(jì)量稱為最大似然估計(jì)量。分別為的最為若設(shè)為的極大似然估計(jì)。的極大似然估計(jì),為單調(diào)函數(shù),則(2)估計(jì)量的評選標(biāo)準(zhǔn)無偏性為未知參數(shù)的估計(jì)量。若E()=,則稱為的無偏估計(jì)量。E()=E(X),E(S2)=D(X)有效性一致性設(shè)和是未知參數(shù)有效。的兩個無偏估計(jì)量。若,則稱設(shè)是的一串估計(jì)量,如果對于任意的正數(shù),都有則稱為的一致估計(jì)量(或相合估計(jì)量)。若為的無偏估計(jì),且則為的一致估計(jì)。只要總體的E(X)和D(X)存在,一切樣本矩和樣本矩的連續(xù)函數(shù)都是相應(yīng)總體的一致估計(jì)量。(3)區(qū)間估計(jì)置信區(qū)間和置信度設(shè)總體X含有一個待估的未知參數(shù)。如果我們從樣本出發(fā),找出兩個統(tǒng)計(jì)量與,使得區(qū)間以的概率包含這個待估參數(shù),即那么稱區(qū)間為的置信區(qū)間,為該區(qū)間的置信度(或置信水平)。單正態(tài)總體的期望
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB45T 2714-2023 消防車道和消防車登高操作場地管理規(guī)范
- 2024年版品牌授權(quán)合作協(xié)議版B版
- 行政實(shí)習(xí)總結(jié)范本
- 初中生開學(xué)作文集合8篇
- 有關(guān)員工離職申請書五篇
- DB45T 2624-2022 海岸帶生態(tài)修復(fù)工程效果評估技術(shù)規(guī)程
- DB45T 2614-2022 歷史文化景區(qū)游覽調(diào)度服務(wù)規(guī)范
- 價房買賣合同
- 電流電壓互感器基礎(chǔ)知識培訓(xùn)
- 高一物理教師述職報(bào)告4篇
- 企業(yè)培訓(xùn)師競聘
- 交通運(yùn)輸行業(yè)員工安置方案
- 委托融資協(xié)議三篇
- 新《高等教育學(xué)》考試復(fù)習(xí)題及答案
- 山東省濟(jì)南市濟(jì)鋼高級中學(xué)2025屆物理高一上期末檢測試題含解析
- 黃山景區(qū)旅游客源消費(fèi)特征分析
- 生 物微生物的分布 課件-2024-2025學(xué)年人教版生物七年級上冊
- 2024年軍隊(duì)文職(教育學(xué))考前通關(guān)知識點(diǎn)必練題庫(含真題)
- LNG(天然氣)供氣站(氣化站)安全應(yīng)急救援預(yù)案
- 2024-2030年中國核醫(yī)學(xué)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報(bào)告
- 7.5 歌曲 《紅河谷》課件(20張)
評論
0/150
提交評論