版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題25參變分離法解決導(dǎo)數(shù)問題一、單選題1.已知函數(shù)SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,則a的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由SKIPIF1<0,可得SKIPIF1<0,從而SKIPIF1<0,從而當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,構(gòu)造函數(shù)SKIPIF1<0,可得SKIPIF1<0,結(jié)合SKIPIF1<0時,SKIPIF1<0取得最大值1,從而SKIPIF1<0的最大值為SKIPIF1<0,只需SKIPIF1<0即可.【詳解】由題意,SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是減函數(shù),在SKIPIF1<0是增函數(shù),SKIPIF1<0,又因為當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值1,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,所以SKIPIF1<0.故選:B.【點睛】關(guān)鍵點點睛:本題考查不等式恒成立問題,解題關(guān)鍵是將原不等式轉(zhuǎn)化為SKIPIF1<0,進(jìn)而求出SKIPIF1<0的最大值,令其小于SKIPIF1<0即可.考查學(xué)生的邏輯推理能力,計算求解能力,屬于中檔題.2.若函數(shù)SKIPIF1<0沒有極值點,則實數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先對函數(shù)求導(dǎo),然后結(jié)合極值存在的條件轉(zhuǎn)化為函數(shù)圖象交點問題,分離參數(shù)后結(jié)合導(dǎo)數(shù)即可求解.【詳解】由題意可得,SKIPIF1<0沒有零點,或者有唯一解(但導(dǎo)數(shù)在點的兩側(cè)符號相同),即SKIPIF1<0沒有交點,或者只有一個交點但交點的兩側(cè)符號相同.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減且SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,故當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,又SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,結(jié)合圖象可知,SKIPIF1<0即SKIPIF1<0.故選:C.【點睛】方法點睛:已知函數(shù)沒有極值點,求參數(shù)值(取值范圍)常用的方法:(1)分離參數(shù)法:先求導(dǎo)然后將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(2)數(shù)形結(jié)合法:先求導(dǎo)然后對導(dǎo)函數(shù)變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.3.若函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù),則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】SKIPIF1<0在SKIPIF1<0上是減函數(shù)等價于SKIPIF1<0在SKIPIF1<0上恒成立,利用分離參數(shù)求解即可.【詳解】∵SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故選:A.【點睛】本題主要考查“分離參數(shù)”在解題中的應(yīng)用、函數(shù)的定義域及利用單調(diào)性求參數(shù)的范圍,屬于中檔題.利用單調(diào)性求參數(shù)的范圍的常見方法:①視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間SKIPIF1<0上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的;②利用導(dǎo)數(shù)轉(zhuǎn)化為不等式SKIPIF1<0或SKIPIF1<0恒成立問題求參數(shù)范圍.4.已知函數(shù)SKIPIF1<0(SKIPIF1<0為自然對數(shù)的底數(shù)),SKIPIF1<0.若存在實數(shù)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,且SKIPIF1<0,則實數(shù)SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】C【分析】根據(jù)SKIPIF1<0可求得SKIPIF1<0,利用SKIPIF1<0得到SKIPIF1<0,將問題轉(zhuǎn)化為SKIPIF1<0,SKIPIF1<0的最大值的求解問題,利用導(dǎo)數(shù)求得SKIPIF1<0,從而求得結(jié)果.【詳解】SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,整理得:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上均為減函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即實數(shù)SKIPIF1<0的最大值為SKIPIF1<0.故選:C.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,解題關(guān)鍵是能夠通過分離變量的方式將問題轉(zhuǎn)化為函數(shù)最值的求解問題,進(jìn)而利用導(dǎo)數(shù)求得函數(shù)最值得到結(jié)果.5.設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個零點,則實數(shù)a的取值范圍()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】令SKIPIF1<0,進(jìn)行參變分離得SKIPIF1<0,設(shè)SKIPIF1<0,將問題等價于y=a與SKIPIF1<0在SKIPIF1<0有兩個交點.求導(dǎo),分析導(dǎo)函數(shù)的正負(fù)得出函數(shù)SKIPIF1<0的單調(diào)性,從而作出圖象和最值,運用數(shù)形結(jié)合的思想可得選項.【詳解】令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0有兩個零點等價于y=a與SKIPIF1<0在SKIPIF1<0有兩個交點.因為SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在(0,e)上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.如圖所示,畫出SKIPIF1<0的大致圖象。結(jié)合圖象可知,當(dāng)SKIPIF1<0時,y=a與SKIPIF1<0在SKIPIF1<0有兩個交點,即此時SKIPIF1<0在SKIPIF1<0有兩個零點.故選:D.【點睛】本題考查根據(jù)函數(shù)的零點個數(shù)求參數(shù)的范圍的問題,常采用參變分離的方法,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和最值,運用數(shù)形結(jié)合的思想,屬于較難題.6.已知關(guān)于x的方程SKIPIF1<0在SKIPIF1<0上有兩解,則實數(shù)k的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用參變量分離法可將問題轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上有兩解,進(jìn)而可將問題轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有兩個交點,利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性,利用數(shù)形結(jié)合即可求出實數(shù)k的取值范圍.【詳解】由已知可得SKIPIF1<0在SKIPIF1<0上有兩解,令SKIPIF1<0,SKIPIF1<0,則問題轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0在SKIPIF1<0上有兩個交點,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,又SKIPIF1<0,所以,實數(shù)k的取值范圍為SKIPIF1<0.故選:B【點睛】本題主要考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,考查函數(shù)與方程思想,關(guān)鍵是對參變量分離轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù)使問題得以解決,屬于難題.7.若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】求導(dǎo)SKIPIF1<0,由題意可得SKIPIF1<0恒成立,即為SKIPIF1<0,設(shè)SKIPIF1<0,即SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三種情況,分別求得范圍,可得實數(shù)SKIPIF1<0的取值范圍.【詳解】由函數(shù)SKIPIF1<0得SKIPIF1<0,由題意可得SKIPIF1<0恒成立,即為SKIPIF1<0,設(shè)SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式顯然成立;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0時,SKIPIF1<0取得最小值1,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0,可得SKIPIF1<0,綜上可得實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0,故選:A.【點睛】本題考查運用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求參數(shù)的范圍,利用參變分離的方法解決不等式的恒成立問題,屬于較難題.8.若關(guān)于x的不等式(a+2)x≤x2+alnx在區(qū)間[SKIPIF1<0,e](e為自然對數(shù)的底數(shù))上有實數(shù)解,則實數(shù)a的最大值是()A.﹣1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先對SKIPIF1<0化簡,SKIPIF1<0,用導(dǎo)數(shù)判斷SKIPIF1<0在SKIPIF1<0SKIPIF1<0的符號為正,可轉(zhuǎn)化為SKIPIF1<0,在SKIPIF1<0SKIPIF1<0有解,設(shè)SKIPIF1<0SKIPIF1<0,利用導(dǎo)數(shù)求函數(shù)SKIPIF1<0的最大值SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,即實數(shù)SKIPIF1<0的最大值為SKIPIF1<0.【詳解】由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,則SKIPIF1<0,即由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0SKIPIF1<0有解,設(shè)SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,又SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,即實數(shù)SKIPIF1<0的最大值為SKIPIF1<0.故選:D.【點睛】本題考查了不等式有解的問題,并多次利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求最值,考查了學(xué)生的轉(zhuǎn)化能力,邏輯思維能力,運算能力,難度較大.9.已知函數(shù)SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為自然對數(shù)的底數(shù)).若存在SKIPIF1<0,使得SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】證明出當(dāng)SKIPIF1<0時SKIPIF1<0,由題意可得出SKIPIF1<0使得SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用導(dǎo)數(shù)求得函數(shù)SKIPIF1<0的最大值,結(jié)合SKIPIF1<0可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,由題意可知,SKIPIF1<0使得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0單調(diào)遞增極大值單調(diào)遞減所以,函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,因此,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.【點睛】本題考查利用導(dǎo)數(shù)研究不等式能成立問題,考查了參變量分離法的應(yīng)用,考查計算能力,屬于中等題.10.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若對于任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0SKIPIF1<0成立,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知將原不等式等價于SKIPIF1<0恒成立,構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo)SKIPIF1<0在SKIPIF1<0上恒成立,運用參變分離可得選項.【詳解】∵對于任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0成立,∴不等式等價為SKIPIF1<0恒成立,令SKIPIF1<0,則不等式等價為當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù);SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立;∴SKIPIF1<0;即SKIPIF1<0恒成立,令SKIPIF1<0,∴SKIPIF1<0;∴SKIPIF1<0在SKIPIF1<0上為增函數(shù);∴SKIPIF1<0;∴SKIPIF1<0;∴SKIPIF1<0.∴SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.【點睛】本題考查構(gòu)造函數(shù),運用導(dǎo)函數(shù)解決不等式恒成立的問題,構(gòu)造合適的函數(shù)是關(guān)鍵,屬于較難題.11.已知函數(shù)SKIPIF1<0有兩個極值點,則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求導(dǎo)SKIPIF1<0,將問題轉(zhuǎn)化為SKIPIF1<0有兩個不同的零點,也即是關(guān)于x的方程SKIPIF1<0有兩個不同的解,構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo)SKIPIF1<0,分析導(dǎo)函數(shù)取得正負(fù)的區(qū)間,從而得函數(shù)SKIPIF1<0的單調(diào)性和最值,從而可得選項.【詳解】函數(shù)SKIPIF1<0的定義域為R,SKIPIF1<0,因為函數(shù)SKIPIF1<0有兩個極值點,所以SKIPIF1<0有兩個不同的零點,故關(guān)于x的方程SKIPIF1<0有兩個不同的解,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減,又當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0.故選:B.【點睛】本題考查運用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性、最值、極值,關(guān)鍵在于構(gòu)造合適的函數(shù),參變分離的方法的運用,屬于中檔題.12.已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)SKIPIF1<0在SKIPIF1<0上恒成立求解.【詳解】∵SKIPIF1<0,∴SKIPIF1<0.又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立.∵當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0.所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.【點睛】本題考查根據(jù)導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,以及不等式的恒成立問題,注意當(dāng)SKIPIF1<0時,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減;而當(dāng)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減時,則有SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立.解題時要注意不等式是否含有等號,屬于中檔題.13.對于函數(shù)SKIPIF1<0,把滿足SKIPIF1<0的實數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的不動點.設(shè)SKIPIF1<0,若SKIPIF1<0有兩個不動點,則實數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)定義分離出參數(shù)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,討論單調(diào)性和最值,結(jié)合圖象可得答案.【詳解】由SKIPIF1<0得SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0得SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0得SKIPIF1<0在SKIPIF1<0和SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0的極小值為SKIPIF1<0,圖象如圖所示,由圖可知,SKIPIF1<0時,SKIPIF1<0有兩個不動點,故選:B.【點睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,考查了分離參數(shù)法與構(gòu)造函數(shù)法的應(yīng)用.14.已知函數(shù)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由題意得出SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,可知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,可得出SKIPIF1<0對任意的SKIPIF1<0恒成立,利用參變量分離法可得出SKIPIF1<0,利用導(dǎo)數(shù)求得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值,由此可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為增函數(shù),則SKIPIF1<0對任意的SKIPIF1<0恒成立,SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)SKIPIF1<0單調(diào)遞增.所以,函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,SKIPIF1<0.因此,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.【點睛】本題考查利用函數(shù)在區(qū)間上的單調(diào)性求參數(shù),根據(jù)不等式的結(jié)構(gòu)特征構(gòu)造合適的函數(shù)是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.二、多選題15.對于函數(shù)SKIPIF1<0,下列說法正確的是()A.SKIPIF1<0在SKIPIF1<0處取得極大值SKIPIF1<0 B.SKIPIF1<0有兩個不同的零點C.SKIPIF1<0 D.若SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0【答案】ACD【分析】A.先求函數(shù)的導(dǎo)數(shù)SKIPIF1<0,判斷函數(shù)的單調(diào)性,判斷函數(shù)的極大值;B.根據(jù)函數(shù)的解析式,直接求函數(shù)的零點;C.根據(jù)函數(shù)的單調(diào)區(qū)間,直接比較大?。籇.不等式轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,即求函數(shù)SKIPIF1<0的最大值.【詳解】由已知,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0的極大值為SKIPIF1<0,A正確;又令SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0只有1個零點,B不正確;函數(shù)在SKIPIF1<0上單調(diào)遞減,因為SKIPIF1<0,所以SKIPIF1<0,故C正確;若SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,故D正確.故選:ACD【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),涉及到函數(shù)的極值、零點、不等式恒成立等問題,考查學(xué)生的邏輯推理能力,是一道中檔題.16.關(guān)于函數(shù)SKIPIF1<0,SKIPIF1<0下列說法正確的是()A.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0B.若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有一個極值,則SKIPIF1<0C.對任意SKIPIF1<0,SKIPIF1<0恒成立D.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恰有2個零點【答案】ABD【分析】直接逐一驗證選項,利用導(dǎo)數(shù)的幾何意義求切線方程,即可判斷A選項;利用分離參數(shù)法,構(gòu)造新函數(shù)和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值、最值,即可判斷BC選項;通過構(gòu)造新函數(shù),轉(zhuǎn)化為兩函數(shù)的交點個數(shù)來解決零點個數(shù)問題,即可判斷D選項.【詳解】解:對于A,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故切點為(0,0),則SKIPIF1<0,所以SKIPIF1<0,故切線斜率為1,所以SKIPIF1<0在SKIPIF1<0處的切線方程為:SKIPIF1<0,即SKIPIF1<0,故A正確;對于B,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有一個極值,即SKIPIF1<0在SKIPIF1<0上恰有一個解,令SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恰有一個解,則SKIPIF1<0在SKIPIF1<0上恰有一個解,即SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0上恰有一個交點,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以極大值為SKIPIF1<0,極小值為SKIPIF1<0,而SKIPIF1<0,作出SKIPIF1<0,SKIPIF1<0的大致圖象,如下:由圖可知,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的圖象在SKIPIF1<0上恰有一個交點,即函數(shù)SKIPIF1<0在SKIPIF1<0上恰有一個極值,則SKIPIF1<0,故B正確;對于C,要使得SKIPIF1<0恒成立,即在SKIPIF1<0上,SKIPIF1<0恒成立,即在SKIPIF1<0上,SKIPIF1<0恒成立,即SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以極大值為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,所以SKIPIF1<0時,在SKIPIF1<0上,SKIPIF1<0恒成立,即當(dāng)SKIPIF1<0時,SKIPIF1<0才恒成立,所以對任意SKIPIF1<0,SKIPIF1<0不恒成立,故C不正確;SKIPIF1<0對于D,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,可知在SKIPIF1<0內(nèi),兩個圖象恰有兩個交點,則SKIPIF1<0在SKIPIF1<0上恰有2個零點,故D正確.故選:ABD.【點睛】本題考查函數(shù)和導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)的幾何意義求切線方程,考查分離參數(shù)法的應(yīng)用和構(gòu)造新函數(shù),以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值最值、零點等,考查化簡運算能力和數(shù)形結(jié)合思想.三、解答題17.已知函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立.(1)求實數(shù)SKIPIF1<0的值;(2)記SKIPIF1<0,若SKIPIF1<0,且當(dāng)SKIPIF1<0時,不等式SKIPIF1<0恒成立,求SKIPIF1<0的最大值.【答案】(1)SKIPIF1<0;(2)3.【分析】(1)由條件可得SKIPIF1<0是SKIPIF1<0的極大值點,從而SKIPIF1<0,可得答案.
(2)由條件SKIPIF1<0,根據(jù)條件可得SKIPIF1<0對任意的SKIPIF1<0恒成立,令SKIPIF1<0,求出SKIPIF1<0的導(dǎo)函數(shù),得出SKIPIF1<0單調(diào)區(qū)間,利用函數(shù)的隱零點,分析得出答案【詳解】(1)解:SKIPIF1<0的定義域是SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0是SKIPIF1<0的極大值點,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(2)依題意得,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0對任意的SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因為SKIPIF1<0,SKIPIF1<0,所以方程SKIPIF1<0在SKIPIF1<0上存在唯一的實數(shù)根SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,把①代入得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故整數(shù)SKIPIF1<0的最大值是3.【點睛】關(guān)鍵點睛:本題考查根據(jù)恒成立求參數(shù)的最大整數(shù)值,考查函數(shù)的隱零點的整體然換的應(yīng)用,解答本題的關(guān)鍵是由函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,得出SKIPIF1<0在SKIPIF1<0上存在唯一的實數(shù)根SKIPIF1<0,且SKIPIF1<0,得出SKIPIF1<0單調(diào)性,從而得出SKIPIF1<0,然后將SKIPIF1<0代入,得出SKIPIF1<0,屬于難題.18.已知函數(shù)SKIPIF1<0的圖象過點SKIPIF1<0,且在P處的切線恰好與直線SKIPIF1<0垂直.(1)求SKIPIF1<0的解析式;(2)若SKIPIF1<0在SKIPIF1<0上是減函數(shù),求m的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)求導(dǎo)得直線斜率,再利用已知條件建立方程組,求解即可函數(shù)的解析式;(2)由題得SKIPIF1<0在SKIPIF1<0上恒成立,法一:分SKIPIF1<0和SKIPIF1<0兩種情況討論,運用二次函數(shù)的性質(zhì)可得答案.法二:進(jìn)行參變分離,運用不等式恒成立的思想可得答案.【詳解】解:(1)SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立;
當(dāng)SKIPIF1<0時,設(shè)SKIPIF1<0,由函數(shù)SKIPIF1<0的圖象的對稱軸為SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0.故m的取值范圍是SKIPIF1<0.
法二:SKIPIF1<0對SKIPIF1<0成立,當(dāng)SKIPIF1<0時;SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時;SKIPIF1<0,SKIPIF1<0【點睛】不等式的恒成立問題,常常利用函數(shù)的最值得以解決,參數(shù)與函數(shù)的最值的大小關(guān)系.19.已知函數(shù)SKIPIF1<0(SKIPIF1<0).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案不唯一,見解析;(2)SKIPIF1<0.【分析】(1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,判斷函數(shù)的單調(diào)性即可;(2原不等式化為:SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,SKIPIF1<0,求出函數(shù)的導(dǎo)數(shù),再令SKIPIF1<0,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.【詳解】(1)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減;(2)原不等式化為:SKIPIF1<0在SKIPIF1<0上恒成立,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0.【點睛】方法點睛:本題考查利用導(dǎo)數(shù)研究單調(diào)性(含參),考查利用導(dǎo)數(shù)研究恒成立問題,解決第(2)問的關(guān)鍵是將原不等式轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上恒成立,進(jìn)而利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而得解,考查邏輯思維能力和運算求解能力,考查轉(zhuǎn)化和劃歸思想,屬于常考題.20.已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若曲線SKIPIF1<0在SKIPIF1<0處的切線與直線SKIPIF1<0垂直,求實數(shù)SKIPIF1<0的值;(2)設(shè)SKIPIF1<0,若對任意兩個不等的正數(shù)SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍;(3)若SKIPIF1<0上存在一點SKIPIF1<0,使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)先根據(jù)導(dǎo)數(shù)的幾何意義得SKIPIF1<0,即可得SKIPIF1<0的值;(2)設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則轉(zhuǎn)化為SKIPIF1<0在SKIPIF1<0上為增函數(shù),即SKIPIF1<0在SKIPIF1<0上恒成立,參變分離得:SKIPIF1<0,最后根據(jù)二次函數(shù)最值求實數(shù)SKIPIF1<0的取值范圍;(3)先化簡不等式,并構(gòu)造函數(shù)SKIPIF1<0,求導(dǎo)數(shù),按導(dǎo)數(shù)零點與定義區(qū)間的大小關(guān)系討論函數(shù)的單調(diào)性,根據(jù)單調(diào)性確定函數(shù)的最小值,根據(jù)最小值小于SKIPIF1<0即可得實數(shù)SKIPIF1<0的取值范圍.【詳解】(1)由SKIPIF1<0,得SKIPIF1<0.由題意,SKIPIF1<0,所以SKIPIF1<0.(2)SKIPIF1<0.因為對任意兩個不等的正數(shù)SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0即SKIPIF1<0恒成立.問題等價于函數(shù)SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以SKIPIF1<0在SKIPIF1<0上恒成立.即SKIPIF1<0在SKIPIF1<0上恒成立.所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.(3)不等式SKIPIF1<0等價于SKIPIF1<0,整理得SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,由題意知,在SKIPIF1<0上存在一點SKIPIF1<0,使得SKIPIF1<0.SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.①當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.只需SKIPIF1<0,解得SKIPIF1<0.②當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0處取最小值.令SKIPIF1<0即SKIPIF1<0,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣果園合同范本
- 廣告亞克力合同范本
- 安全制作合同范本
- 消毒機器人租賃合同范本
- 彩鋼合同范本
- 水井勞務(wù)合同范本
- 瀝青混凝土拉運合同范本
- app 蘋果 合同范本
- 建筑行業(yè)的分包合同范本
- 抵質(zhì)押合同范本
- 【良品鋪子資本結(jié)構(gòu)問題及優(yōu)化對策分析案例10000字】
- 前程無憂的題庫
- 擔(dān)保法全文(2024版)
- 上海教育出版社:六年級英語上冊(三年級起點)單詞表(帶音標(biāo))
- 《中小型機場空管設(shè)施防雷裝置檢測技術(shù)規(guī)范》編制說明
- 《沙龍培訓(xùn)》課件
- 知道網(wǎng)課智慧《文獻(xiàn)檢索與科技論文寫作》測試答案
- 事故調(diào)查分析課件
- 新人教版九年級數(shù)學(xué)下冊期中考試卷及答案【真題】
- 2024年浙江長興經(jīng)濟發(fā)展集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- 食品安全行動計劃書
評論
0/150
提交評論