毫米波技術及芯片詳解_第1頁
毫米波技術及芯片詳解_第2頁
毫米波技術及芯片詳解_第3頁
毫米波技術及芯片詳解_第4頁
毫米波技術及芯片詳解_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、毫米波技術及芯片詳解導讀毫米波技術方面,結合目前一些熱門的毫米波頻段的系統(tǒng)應用,如毫米波 通信、毫米波成像以及毫米波雷達等,對毫米波芯片發(fā)展做了重點介紹。由于毫米波器件的成本較高,之前主要應用于軍事。然而隨著高速寬帶 無線通信、汽車輔助駕駛、安檢、醫(yī)學檢測等應用領域的快速發(fā)展,近年來毫 米波在民用領域也得到了廣泛的研究和應用。目前,6 GHz以下的黃金通信頻 段,已經很難得到較寬的連續(xù)頻譜,嚴重制約了通信產業(yè)的發(fā)展。相比之下, 毫米波頻段卻仍有大量潛在的未被充分利用的頻譜資源。因此,毫米波成為第 5代移動通信的研究熱點。2015年在WRC2015大會上確定了第5代移動 通信研究備選頻段:24.

2、25-27.5 GHz、37-40.5GHz、42.5-43.5 GHz、45.5-47 GHz、47.2-50.2 GHz、50.4-52.6 GHz、66-76 GHz 和 81-86 GHz,其中 31.8-33.4 GHz、40.5-42.5 GHz和47-47.2 GHz在滿足特定使用條件下允許 作為增選頻段。各種毫米波的器件、芯片以及應用都在如火如荼的開發(fā)著。相 對于微波頻段,毫米波有其自身的特點。首先,毫米波具有更短的工作波長, 可以有效減小器件及系統(tǒng)的尺寸;其次,毫米波有著豐富的頻譜資源,可以勝 任未來超高速通信的需求。此外,由于波長短,毫米波用在雷達、成像等方 面有著更高的分

3、辨率。到目前為止,人們對毫米波已開展了大量的研究,各 種毫米波系統(tǒng)已得到廣泛的應用。隨著第5代移動通信、汽車自動駕駛、安檢 等民用技術的快速發(fā)展,毫米波將被廣泛應用于人們日常生活的方方面面。InfraredMier口Radio wavesUltraviolet X-TAysInfraredMier口Radio wavesUltraviolet X-TAysFrequency (Hz)毫米波技術方面,結合目前一些熱門的毫米波頻段的系統(tǒng)應用,如毫米波 通信、毫米波成像以及毫米波雷達等,對毫米波芯片發(fā)展做了重點介紹。1、毫米波芯片傳統(tǒng)的毫米波單片集成電路主要采用化合物半導體工藝,如碑化鎵(GaAs)

4、、 磷化錮(InP)等,其在毫米波頻段具有良好的性能,是該頻段的主流集成電路 工藝。另一方面,近十幾年來硅基(CMOS、SiGe等)毫米波亞毫米波集成電 路也取得了巨大進展。此外,基于氮化鎵(GaN)工藝的大功率高頻器件也迅 速拓展至毫米波頻段。下面將分別進行介紹。1.1 GaAs和InP毫米波芯片近十幾年來,GaAs和InP工藝和器件得到了長足的進步。基于該類工 藝的毫米波器件類型主要有高電子遷移率晶體管(HEMT)、改性高電子遷移率晶 體管(mHEMT)和異質結雙極性晶體管(HBT)等。目前GaAs、mHEMT、InP、 HEMT和InP HBT的截止頻率(ft)均超過500 GHz,最大

5、振蕩頻率(fmax)均 超過1THz. 2015年美國Northrop Grumman公司報道了工作于0.85 THz 的InP HEMT放大器,2013年美國Teledyne公司與加州理工大學噴氣推進 實驗室報道了工作至0.67 THz的InP HBT放大器,2012年和2014年德國 弗朗霍夫應用固體物理研究所報道了工作頻率超過0.6 THz的mHEMT放大器。1.2 GaN毫米波芯片GaN作為第3代寬禁帶化合物半導體,具有大的禁帶寬度、高的電子遷 移率和擊穿場強等優(yōu)點,器件功率密度是GaAs功率密度的5倍以上,可顯著 地提升輸出功率,減小體積和成本。隨著20世紀90年代GaN材料制備技

6、術的逐漸成熟,GaN器件和電路已成為化合物半導體電路研制領域的熱點方 向,美國、日本、歐洲等國家將GaN作為微波毫米波器件和電路的發(fā)展重點。 近十年來,GaN的低成本襯底材料碳化硅(SiC)也逐漸成熟,其晶格結構與 GaN相匹配,導熱性好,大大加快了 GaN器件和電路的發(fā)展。近年來GaN 功率器件在毫米波領域飛速發(fā)展,日本Eudyna公司報道了 0.15 m柵長的器 件,在30 GHz功率輸出密度達13.7 W/mm.美國HRL報道了多款E波段、 W波段與G波段的GaN基器件,W波段功率密度超過2 W/mm,在180 GHz上功率密度達到296 mW/mm.國內在微波頻段的GaN功率器件已基本

7、 成熟,到W波段的GaN功率器件也取得進展。南京電子器件研究所研制的 Ka波段GaN功率MMIC在3436 GHz頻帶內脈沖輸出功率達到15W,附 加效率30%,功率增益大于20 dB。1.3硅基毫米波芯片硅基工藝傳統(tǒng)上以數字電路應用為主。隨著深亞微米和納米工藝的不斷發(fā) 展,硅基工藝特征尺寸不斷減小,柵長的縮短彌補了電子遷移率的不足,從 而使得晶體管的截止頻率和最大振蕩頻率不斷提高,這使得硅工藝在毫米波甚 至太赫茲頻段的應用成為可能。國際半導體藍圖協(xié)會(InternaTIonalTechnology Roadmap for Semiconductors)預測到 2030 年CMOS 工藝的特征

8、尺寸將減小到5 nm ,而截止頻率ft將超過700 GHz.德國IHP研究所的SiGe工藝晶體管的截止頻率ft和最大振蕩頻率fmax都已經分別達到了 300 GHz和500 GHz,相應的硅基工藝電路工作頻率可擴展到200 GHz以上。由于硅工藝在成本和集成度方面的巨大優(yōu)勢,硅基毫米波亞毫米波集成電 路的研究已成為當前的研究熱點之一。美國佛羅里達大學設計了 410 GHz CMOS振蕩器,加拿大多倫多大學研制了基于SiGe HBT工藝的170 GHz放 大器、160 GHz混頻器和基于CMOS工藝的140 GHz變頻器,美國加州大 學圣芭芭拉分校等基于CMOS工藝研制了 150 GHz放大器等

9、,美國康奈爾大 學基于CMOS工藝研制了 480 GHz倍頻器。在系統(tǒng)集成方面,加拿大多倫 多大學設計了 140 GHz CMOS接收機芯片和165 GHz SiGe的片上收發(fā)系統(tǒng), 美國加州大學柏克萊分校首次將60 GHz頻段硅基模擬收發(fā)電路與數字基帶處 理電路集成在一塊CMOS芯片上,新加坡微電子研究院也實現了包括在片天線 的60 GHz CMOS收發(fā)信機芯片美國加州大學洛杉磯分校報道了 0.54 THz的 頻率綜合器,德國烏帕塔爾綜合大學研制了 820 GHz硅基SiGe有源成像系 統(tǒng),加州大學伯克利分校采用SiGe工藝成功研制了 380 GHz的雷達系統(tǒng)。 日本NICT等基于CMOS工

10、藝實現了 300 GHz的收發(fā)芯片并實現了超過10 Gbps的傳輸速率,但由于沒有功率放大和低噪聲電路,其傳輸距離非常短。 通過采用硅基技術,包含數字電路在內的所有電路均可集成在單一芯片上,因 此有望大幅度降低毫米波通信系統(tǒng)的成本。在毫米波亞毫米波硅基集成電路方面我國大陸起步稍晚,但在國家973計 劃、863計劃和自然科學基金等的支持下,已快速開展研究并取得進展。東 南大學毫米波國家重點實驗室基于90 nm CMOS工藝成功設計了 Q、V和W 頻段放大器、混頻器、VCO等器件和W波段接收機、Q波段多通道收發(fā)信機 等,以及到200 GHz的CMOS倍頻器和到520 GHz的SiGe振蕩器等。2、

11、毫米波電真空器件毫米波集成電路具有體積小、成本低等很多優(yōu)點,但功率受限。為了獲得 更高的輸出功率,可以采用電真空器件,如加拿大CPI公司研制的速調管 (Klystron)在W波段上獲得了超過2000 W的脈沖輸出功率,北京真空電子 研究所研制的行波管(TWT)放大器在W波段的脈沖輸出功率超過了 100 W, 電子科技大學在W波段上也成功設計了 TWT功率放大器,中國科學院合肥 物質科學研究院研制的迺旋管(Gyrotron)在140 GHz上獲得了 0.9 MW的脈 沖輸出功率,與國外水平相當。3、毫米波應用近年來,毫米波器件性能的不斷提高,成本的不斷降低,有力促進了毫 米波在各個領域的應用。目

12、前基于毫米波頻段的應用主要體現在毫米波通信、 毫米波成像及毫米波雷達等方面。3.1毫米波通信隨著無線通信技術的飛速發(fā)展,6 GHz以下黃金通信頻段的頻譜已經非常 擁擠,很難滿足未來無線高速通信的需求。然而,與此相反的是,在毫米波 頻段,頻譜資源豐富但仍然沒有得到充分的開發(fā)利用。在移動通信方面,探索了毫米波移動通信系統(tǒng)場景、網絡結構及空中接口。在目前開展的第5代移動通信(5G)研究中,幾個毫米波頻段已經成為5G候 選頻段。毫米波技術將會在5G的發(fā)展中起著舉足輕重的作用。在短距高速通信系統(tǒng)中,60 GHz頻段得到了廣泛地研究和應用。歐洲、 美國、加拿大、韓國、日本、澳大利亞以及我國陸續(xù)開放了這一頻

13、段的免費頻譜 資源。60 GHz頻段處于大氣衰減峰,雖然不適合遠距通信,但可用于短距 離傳輸,且不會對周圍造成太多干擾。近年來,在60 GHz頻段已發(fā)展了高 速Gbps 通信、WirelessHD、WiGig、近場通訊、IEEE 802.11ad、IEEE802.15.3c 等各種系統(tǒng)與標準。國內東南大學提出了工作在45 GHz頻段的超高速近遠程無線傳輸標準 (Q-LINKPAN),其短距部分已成為IEEE 802.11aj國際標準。45 GHz頻段 的大氣衰減小于1 dB/km,因此不僅可以像60 GHz頻段一樣實現高速短距傳 輸,同時也適用于遠距傳輸。目前實驗系統(tǒng)在82 m的傳輸距離上已實

14、現2 Gbps的傳輸速率,并研制了相應的支持Gbps傳輸的毫米波芯片。衛(wèi)星通信覆蓋范圍廣,是保障偏遠地區(qū)和海上通信以及應急通信的重要手段, 目前其工作頻段主要集中在L、S、C、Ku及Ka波段。隨著衛(wèi)星通信研究的 不斷深入,已在嘗試更高頻段。因為毫米波頻段可以提供更寬的帶寬,因而可 實現更高的通信速率。此外,低功耗、小體積、抗干擾以及較高的空間分辨率 都是其值得利用的特點。目前衛(wèi)星與地面通信的主要研究方向集中在兩個大氣 衰減較小的窗口,Q頻段和W頻段,而60 GHz頻段被認為是實現星間通信 的重要頻段。此外,毫米波光載無線通信(RoF)系統(tǒng)也得到了迅速的發(fā)展。光纖具有成 本低、信道帶寬大、損耗小

15、、抗干擾能力強等優(yōu)點,成為現代通信系統(tǒng)中不可 或缺的部分。正如上文提到的,毫米波具有傳輸容量大、體積小等優(yōu)點,但 也有空間傳輸損耗大等缺點。毫米波RoF系統(tǒng)結合了毫米波和光纖通信的優(yōu)點, 是實現寬帶毫米波通信遠距離傳輸的有效手段。自從1990年光載無線通信的 概念被提出之后,這個領域目前在毫米波頻段成為了研究熱點,很多研究小組在 不同的毫米波頻段進行了研究,比如60 GHz、75-110 GHz、120 GHz、220 GHz、250 GHz 等。3.2毫米波成像利用毫米波穿透性、安全性等優(yōu)點,毫米波成像可有效地對被檢測物體進 行成像,在國家安全、機場安檢、大氣遙感等方面得到了廣泛的研究,根據

16、成 像機理分為被動式成像和主動式成像。毫米波被動式成像是通過探測被測物自身 的輻射能量,并分辨不同物質輻射強度的差異來實現成像。被動式成像從機理 上看是一種安全的成像方式,不會對環(huán)境造成電磁干擾,但對信號本身的強度 以及接收機的靈敏度要求較高。國內外對毫米波被動式成像技術已開展了大量 的研究。毫米波主動式成像主要是通過毫米波源發(fā)射一定強度的毫米波信號,通過 接收被測物的反射波,檢測被測目標與環(huán)境的差異,然后進行反演成像。主動 式成像系統(tǒng)可以對包括塑料等非金屬物體進行檢測,其受環(huán)境影響較小,獲得 的信息量大,可以有效地進行三維成像。常用的主動式成像系統(tǒng)主要包括焦平 面成像以及合成孔徑成像。毫米波

17、成像系統(tǒng)已應用于國內外許多機場的安檢。國 內上海微系統(tǒng)所孫曉瑋團隊研發(fā)成功了毫米波成像安檢系統(tǒng),電子科技大學樊 勇團隊研制成功了毫米波動態(tài)成像系統(tǒng)。3.3毫米波雷達毫米波雷達具有頻帶寬、波長短、波束窄、體積小、功耗低和穿透性強等特 點。相比于激光紅外探測,其穿透性強的特點可以保證雷達能夠工作在霧雨雪 以及沙塵環(huán)境中,受天氣的影響較小。相比于微波波段的雷達,利用毫米波波 長短的特點可以有效減小系統(tǒng)體積和重量,并提高分辨率。這些特點使得毫米 波雷達在汽車防撞、直升機避障、云探測、導彈導引等方面具有重要的應用。微波毫米波汽車防撞雷達主要集中在24 GHz和77 GHz頻段上,是未來 智能駕駛或自動駕駛的核心技術之一。在直升機毫米波防撞雷達的研究上,人 們特別關注毫米波

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論