版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為( )ABCD62已知正三角形的邊長為2,為邊的中點,、分別為邊、上的動點,并滿足,則的取值范圍是( )ABCD3拋物線的焦點為,
2、點是上一點,則( )ABCD4集合的子集的個數(shù)是( )A2B3C4D85劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,得到的近似值為( )ABCD6設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則( )ABCD7已知直線與直線則“”是“”的( )A充分不必要條件
3、B必要不充分條件C充分必要條件D既不充分也不必要條件8已知三棱柱( )ABCD9記為等差數(shù)列的前項和.若,則( )A5B3C12D1310若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是( )ABCD11關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學(xué)通過下面的隨機模擬方法來估計的值:先用計算機產(chǎn)生個數(shù)對,其中,都是區(qū)間上的均勻隨機數(shù),再統(tǒng)計,能與構(gòu)成銳角三角形三邊長的數(shù)對的個數(shù)最后根據(jù)統(tǒng)計數(shù)來估計的值.若,則的估計值為( )ABCD12已知為虛數(shù)單位,實數(shù)滿足,則 ( )A1BCD二、填空題:本題共4小題,每小題5分,共20
4、分。13已知復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)是_,_14已知,滿足,則的展開式中的系數(shù)為_.15已知數(shù)列滿足:,若對任意的正整數(shù)均有,則實數(shù)的最大值是_.16已知數(shù)列滿足,且恒成立,則的值為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.18(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積
5、的最小值,并求此時四邊形的面積.19(12分)以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標(biāo).20(12分)在中,角,的對邊分別為,已知(1)若,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由21(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三
6、角形,分別記它們的面積為公頃和公頃.(1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、的值.22(10分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】利用導(dǎo)數(shù)法和兩直線平行性質(zhì),將線段的最小值轉(zhuǎn)化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設(shè)拋
7、物線的切點為,則由可得,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,以及點到直線的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計算能力.2A【解析】建立平面直角坐標(biāo)系,求出直線,設(shè)出點,通過,找出與的關(guān)系通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識,求出其值域,即為的取值范圍【詳解】以D為原點,BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線 , 設(shè)點, 所以 由得 ,即 ,所以,由及,解得,由二次函數(shù)的圖像知,所以的取值范圍是故選A【點睛】本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運用3B【解
8、析】根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.4D【解析】先確定集合中元素的個數(shù),再得子集個數(shù)【詳解】由題意,有三個元素,其子集有8個故選:D【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個5A【解析】設(shè)圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時,可得,
9、故選:A【點睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.6D【解析】根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,即,由函數(shù)的單調(diào)區(qū)間知,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.7B【解析】利用充分必要條件的定義可判斷兩個條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時,直線,直線 ,此時兩條直線平行;當(dāng)時,直線,直線 ,此時兩條直線平行.所以當(dāng)時,推不出,故“”是“”的不充分條件,當(dāng)時,可以推
10、出,故“”是“”的必要條件,故選:B.【點睛】本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來考慮,后者依據(jù)兩個條件之間的推出關(guān)系,本題屬于中檔題.8C【解析】因為直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC為過底面ABC的截面圓的直徑取BC中點D,則OD底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R13,即R9B【解析】由題得,解得,計算可得.【詳解】,解得,.故選:B【點睛】本題主要考查了等差數(shù)列的通項公式,前項和公式,考查了學(xué)生運算求解能力.10C【解析】求得雙曲線的漸近線方程,可得圓心到漸近線的距離,
11、由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題11B【解析】先利用幾何概型的概率計算公式算出,能與構(gòu)成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構(gòu)成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數(shù),所以有,若,能與構(gòu)成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率
12、計算公式及運用隨機數(shù)模擬法估計概率,考查學(xué)生的基本計算能力,是一個中檔題.12D【解析】 ,則 故選D.二、填空題:本題共4小題,每小題5分,共20分。13 【解析】直接利用復(fù)數(shù)的乘法運算化簡,從而得到復(fù)數(shù)的共軛復(fù)數(shù)和的模【詳解】,則復(fù)數(shù)的共軛復(fù)數(shù)為,且.故答案為:;.【點睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)的計算題141【解析】根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結(jié)合組合的知識求得系數(shù)【詳解】由題意,的展開式中的系數(shù)為故答案為:1【點睛】本題考查二項式定理,掌握二項式定理的應(yīng)用是解題關(guān)鍵152【解析】根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于
13、參數(shù)的關(guān)系,根據(jù)表達式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當(dāng)時,不滿足對任意的正整數(shù)均有.所以.當(dāng)時,證明:對任意的正整數(shù)都有.當(dāng)時, 成立.假設(shè)當(dāng)時結(jié)論成立,即,則,即結(jié)論對也成立.由數(shù)學(xué)歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結(jié)合參數(shù)的范圍問題進行分析.屬于難題.16【解析】易得,所以是等差數(shù)列,再利用等差數(shù)列的通項公式計算即可.【詳解】由已知,因,所以,所以數(shù)列是以為首項,3為公差的等差數(shù)列,故,所以.故答案為:【點
14、睛】本題考查由遞推數(shù)列求數(shù)列中的某項,考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)【解析】(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點,連,可得,可得(或補角)是異面直線與所成的角,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點連接,由則,則,故,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點,則,(或補角)是異面直線與所成的角.設(shè)為邊的中點,則,由知.又由(1)有平面,平面, 所以為二面角的平面角,設(shè)則在中,從而在中,又,從而在中
15、,因,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點睛】本題考查空間點、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計算能力,屬于中檔題.18(1);(2)面積的最小值為;四邊形的面積為【解析】(1)將曲線消去參數(shù)即
16、可得到的普通方程,將,代入曲線的極坐標(biāo)方程即可;(2)由(1)得曲線的極坐標(biāo)方程,設(shè),利用方程可得,再利用基本不等式得,即可得,根據(jù)題意知,進而可得四邊形的面積.【詳解】(1)由曲線的參數(shù)方程為(為參數(shù))消去參數(shù)得曲線的極坐標(biāo)方程為,即,所以,曲線的直角坐標(biāo)方程.(2)依題意得的極坐標(biāo)方程為設(shè),則,故,當(dāng)且僅當(dāng)(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【點睛】本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、點到直線的距離公式、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題19【解析】利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因
17、為,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標(biāo)為.【點睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計算能力,是一道容易題.20見解析【解析】(1)因為,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以(2)若B為直角,則,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*)又,所以,所以,與(*)矛盾,所以不存在滿足為直角21(1),最大值公頃;(2)17、25、5、5.【解析】(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,由面積公式求出 ,即可求出,并求出最值;(2)由(1
18、)知,即可求出、,再算出,代入(1)中表達式求出,。【詳解】(1)由余弦定理得,所以,同理可得又 ,所以,故在區(qū)間上的最大值為,近似值為。(2)由(1)知, ,所以,進而,由知, 故、的值分別是17、25、5、5?!军c睛】本題主要考查利用余弦定理解三角形以及同角三角函數(shù)平方關(guān)系的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運算能力。22(1)見解析(2)(文) (理)【解析】(1)證明:取PD中點G,連結(jié)GF、AG,GF為PDC的中位線,GFCD且,又AECD且,GFAE且GF=AE,EFGA是平行四邊形,則EFAG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),EF面PAD; (2)(文)解:取AD中點O,連結(jié)PO,面PAD面ABCD,PAD為正三角形,PO面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點,F(xiàn)到面ABCD距離,故;(理)連OB交CE于M,可得RtEBCRtOAB,MEB=AOB,則MEB+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《診斷性試驗》課件
- 2025年全球新型穿戴設(shè)備行業(yè)概況及應(yīng)用領(lǐng)域調(diào)研報告
- 2024年農(nóng)業(yè)局上半年工作總結(jié)
- 稅務(wù)知識普及總結(jié)
- 小暑節(jié)氣消費解讀
- 雙十一:餐飲行業(yè)的轉(zhuǎn)型新機遇
- 汽車電商營銷蛻變
- 小學(xué)六年級畢業(yè)演講稿范文合集8篇
- 2023年-2024年項目部安全管理人員安全培訓(xùn)考試題【考點梳理】
- 2023年-2024年項目部安全培訓(xùn)考試題附完整答案(考點梳理)
- 采購合同范例壁布
- 公司員工出差車輛免責(zé)協(xié)議書
- 2024年陜西榆林市神木市公共服務(wù)輔助人員招聘775人歷年管理單位遴選500模擬題附帶答案詳解
- 安全生產(chǎn)事故案例分析
- 期末檢測卷(一)(試卷)-2024-2025學(xué)年外研版(三起)英語六年級上冊(含答案含聽力原文無音頻)
- 《防范于心反詐于行》中小學(xué)防范電信網(wǎng)絡(luò)詐騙知識宣傳課件
- 2023-2024學(xué)年北京市通州區(qū)九年級(上)期末語文試卷
- 綜合機械化固體充填采煤技術(shù)要求-編制說明
- 十人聯(lián)名推薦表
- 七、分蛋糕博弈
- 斷橋隔熱鋁門窗計算書
評論
0/150
提交評論