(完整版)流體力學(xué)NS方程推導(dǎo)過(guò)程_第1頁(yè)
(完整版)流體力學(xué)NS方程推導(dǎo)過(guò)程_第2頁(yè)
(完整版)流體力學(xué)NS方程推導(dǎo)過(guò)程_第3頁(yè)
(完整版)流體力學(xué)NS方程推導(dǎo)過(guò)程_第4頁(yè)
(完整版)流體力學(xué)NS方程推導(dǎo)過(guò)程_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、流體力學(xué)NS方程簡(jiǎn)易推導(dǎo)過(guò)程小菜鳥0引言流體力學(xué)的NS方程對(duì)于整個(gè)流體力學(xué)以及空氣動(dòng)力學(xué)等領(lǐng)域的作用非常顯著,不過(guò)其公式繁瑣,推導(dǎo)思路不容易理順,最近重新整理了一下NS方程的推導(dǎo),記錄一下整個(gè)推導(dǎo)過(guò)程,供自己學(xué)習(xí),也可以供大家交流和學(xué)習(xí)?;炯僭O(shè)空氣是由大量分子組成,分子做著無(wú)規(guī)則熱運(yùn)動(dòng),我們可以想象,隨著觀察尺度的逐漸降低,微觀情況下流體的速度密度和溫度等物理量不可能與宏觀情況相同,其物理量存在間斷的現(xiàn)象,例如我們?cè)诳臻g中取出一塊控制體,當(dāng)控制體中存在分子時(shí),該控制體的密度等量較大,不存在時(shí)就會(huì)為0,這在微觀尺度下是常見(jiàn)。不過(guò)隨著觀察尺度增加,在宏觀情況下,控制體積內(nèi)包含大量分子,控制體積的

2、壓力密度溫度速度等物理量存在統(tǒng)計(jì)平均結(jié)果,這個(gè)結(jié)果是穩(wěn)定的,例如流場(chǎng)變量的壓力密度和溫度滿足理想氣體狀態(tài)方程。自然界中宏觀情況的流體運(yùn)動(dòng)畢竟占據(jù)大多數(shù),NS方程限定了自己的適用條件為宏觀運(yùn)動(dòng),采用稍微專業(yè)一點(diǎn)難度術(shù)語(yǔ)是流體滿足連續(xù)介質(zhì)假設(shè)。連續(xù)介質(zhì)假設(shè)的意思就是說(shuō),我們?cè)诹鲌?chǎng)中隨意取出流體微團(tuán),這個(gè)流體微團(tuán)在宏觀上是無(wú)窮小的,因此整個(gè)流場(chǎng)的物理量可以進(jìn)行數(shù)學(xué)上的極限微分積分等運(yùn)算;同時(shí),這個(gè)流體微團(tuán)在微觀上是無(wú)窮大的,微團(tuán)中包含了大量分子,以至于可以進(jìn)行分子層面的統(tǒng)計(jì)平均,獲得我們通常見(jiàn)到的流場(chǎng)變量。連續(xù)介質(zhì)假設(shè)成立需要滿足:所研究流體問(wèn)題的最小空間尺度遠(yuǎn)遠(yuǎn)大于分子平均運(yùn)動(dòng)自由程(標(biāo)準(zhǔn)狀況下空

3、氣的平均分子自由程在十分之一微米的量級(jí),具體值可以參考分子運(yùn)動(dòng)理論:,這在大多數(shù)宏觀情況下都是成立的,也是NS方程能夠廣泛采用的基礎(chǔ),即使在湍流中,也是成立的,因此才保證NS方程也適用于描述湍流。有些情況下連續(xù)介質(zhì)假設(shè)不成立,存在哪些情況?第一種是空間尺度特別小,例如熱線風(fēng)速儀的金屬絲,直徑通常在15微米量級(jí),最小流體微團(tuán)已經(jīng)接近分子平均運(yùn)動(dòng)自由程,連續(xù)介質(zhì)假設(shè)不能直接使用,類似情況還包括激波,激波面受到壓縮,其尺度也較小,為幾個(gè)分子平均自由程量級(jí),不過(guò)采用連續(xù)介質(zhì)假設(shè)進(jìn)行激波內(nèi)流場(chǎng)計(jì)算時(shí),計(jì)算結(jié)果仍然可以得到比較合理,并且與實(shí)際情況相符,這也給激波問(wèn)題的研究和解決帶來(lái)了基礎(chǔ)性的保證;第二種是

4、分子平均運(yùn)動(dòng)自由程特別大,分子平均運(yùn)動(dòng)自由程是指兩個(gè)分子之間碰撞距離的平均值,這個(gè)結(jié)果與分子有效直徑,分子運(yùn)動(dòng)速度等相關(guān),宏觀上來(lái)講,溫度越高、壓力越大,分子平均運(yùn)動(dòng)自由程越大,而在高空情況下,壓力非常低,自由程可能很大,并且大到與飛行器尺度相近,于是連續(xù)介質(zhì)假設(shè)失效,此時(shí)必須考慮稀薄氣體效應(yīng)。在層流邊界層情況下,分子平均運(yùn)動(dòng)自由程與邊界層之間存在近似關(guān)系:九M5vRe從這個(gè)關(guān)系中,可以發(fā)現(xiàn),當(dāng)馬赫數(shù)非常大但是同時(shí)雷諾數(shù)非常小的時(shí)候,流場(chǎng)微小尺度才可能達(dá)到分子平均運(yùn)動(dòng)自由程lmd的程度。可以想象一下,在大多數(shù)我們能觀察到的情況下,上述公式的結(jié)果都是非常小的,滿足連續(xù)介質(zhì)假設(shè),這個(gè)公式不成立的情

5、況在大氣層外邊緣,此時(shí)大氣分子之間平均動(dòng)量交換降低,導(dǎo)致粘性變得非常小,雷諾數(shù)很高,因此公式計(jì)算結(jié)果急劇降低,導(dǎo)致連續(xù)介質(zhì)假設(shè)失效。前面討論了連續(xù)介質(zhì)建設(shè)成立的條件以及不成立的例子,下面討論的都是連續(xù)介質(zhì)假設(shè)范圍內(nèi)的結(jié)果。連續(xù)性方程:質(zhì)量守恒定律的流體表達(dá)根據(jù)質(zhì)量守恒定律,我們知道,在流場(chǎng)取的控制體滿足如下物理規(guī)律:控制體的總質(zhì)量不隨著運(yùn)動(dòng)而變化的,在運(yùn)動(dòng)過(guò)程中控制體始終由相同流體微團(tuán)組成,因此利用流場(chǎng)物理量將物理規(guī)律用數(shù)學(xué)公式表達(dá)可得:HIPdV=0DtV根據(jù)引論1中的內(nèi)容,上式左邊隨體導(dǎo)數(shù)可以采用兩種形式的偏導(dǎo)數(shù)表示:VIIp(v-n)dS=III住+V(pv)dV=0Ldt_DV(1)微

6、元體表達(dá)形式:o空+w(pv)=0根據(jù)引論1中微元體的隨體導(dǎo)數(shù)關(guān)系可以得到:需+PV.v=0或者V.v=-+DP2)張量表達(dá)形式:k.空+2(pu)=0Stdxjj動(dòng)量方程:牛頓第二定律的流體表達(dá)根據(jù)牛頓第二定律,流場(chǎng)中取出控制體滿足如下規(guī)律:某一時(shí)刻,控制體中所有流體微團(tuán)的總動(dòng)量隨時(shí)間的變化率=控制體中所有流體微團(tuán)受到的合力??刂企w受力主要包括表面力和體積力,表面力作用于物體表面,例如壓力等應(yīng)力,表面力可以分解為法向力和切向力,法向力通常為壓力,切向力通常為粘性力(當(dāng)然這不是絕對(duì),因?yàn)榉ㄏ蛄€包括流場(chǎng)可壓縮性引起的法向應(yīng)力);體積力作用于流場(chǎng)中每一個(gè)流體微團(tuán),例如重力,電磁力等。因此,牛頓第

7、二定律可以表達(dá)為:控制體總動(dòng)量隨時(shí)間變化率=控制體表面力合力+控制體體積力合力(為了推導(dǎo)方便,下面將體積力忽略,在重力等法向力影響較大時(shí),將該項(xiàng)加入即可)。利用流場(chǎng)變量可以將上述定律表達(dá)為數(shù)學(xué)公式:UfpvdV=-UpndS+JJt-ndSDtTOC o 1-5 h zVSS其中根據(jù)引論1和引論2,可知方程左邊具有兩種偏導(dǎo)數(shù)表達(dá)形式,、L=BJpDvdV=fffdPVdV+ffpv(v-n)dSDtdtffVf(VSVp+V-t)dVv亠(1)微元體表達(dá)形式:pDv=-Vp+V-TDt根據(jù)引論2,上式左邊具有這兩種偏導(dǎo)數(shù)表達(dá)形式(一種根據(jù)定義,一種引入質(zhì)量守恒關(guān)系):P裁汀(v小罟+V-(Pv

8、)2)張量表達(dá)形式:DudpStTOC o 1-5 h zpi=-+jDtdxdxij根據(jù)引論2,上式左邊具有兩種偏導(dǎo)數(shù)表達(dá)形式(一種定義,一種引入質(zhì)量守恒):Dudududpud(、Pi=Pi+PUi=i+PUU丿Dtdtjdxdtdxijjj3)補(bǔ)充說(shuō)明1:粘性應(yīng)力表達(dá)式上述公式中,我們將表面力表達(dá)為表面壓力+粘性力的形式,其中表面壓力為法向力,粘性力由流體粘性引起,包括法向力和切向力,根據(jù)各項(xiàng)同性假設(shè),粘性應(yīng)力張量可以表達(dá)為:t=九sO+2psijijij1(dudu)dui+j,s=kdxdxIdxjik其中,miu稱為動(dòng)力粘性系數(shù)。s=ij2根據(jù)Stokes假設(shè),在通常情況下,體積粘

9、性系數(shù)卩=九+2卩=0,于是上述3粘性應(yīng)力表達(dá)為:IduQuT=川i-+jijIdxdxji(4)補(bǔ)充說(shuō)明2:粘性應(yīng)力的空間導(dǎo)數(shù)dukodxijk在動(dòng)量方程中,粘性應(yīng)力的空間導(dǎo)數(shù)可以表達(dá)為:dudu2duiIjkOdxdx3dxijjikpdsdpIdududp(dudu2dup、+iIjkOdxIdxdx3dxijjjikduv、-kodxijkdTdj=p-dxdxjjd2u=Pi+dxdx3dxdxjjjj如果流場(chǎng)為不可壓縮s=0并且粘性系數(shù)不隨空間改變,即溫度不變,可以簡(jiǎn)化為:dTpd2upjpi,whens=0,p=Cdxdxdxjjj(5)補(bǔ)充說(shuō)明3:動(dòng)力粘性系數(shù)表達(dá)式:該公式中動(dòng)

10、力粘性系數(shù)是流體的基本變量,該系數(shù)表征流體分子之間動(dòng)量交換的快慢程度,與流場(chǎng)的溫度相關(guān),與壓力等其他變量關(guān)系較小,在溫度為:*峯馬飛芒形puepaqins宙送氐叵國(guó)耶1006100TA+(-一7IQ丿弋?xfXQJ(7廠(十+(忙aad空=?-(乙)Il丿(n)d(+3A9d=3A9d乙、:芒務(wù)*峯糜昔削曲固早苜芒丁圧巨乙業(yè)T安12郢出(么習(xí))+(i)-A+()*A-=Y+APAP(乙、:芒務(wù)?k刪()A(2A7)A+(-i)A+()A-jjJ=y呢、+za+d+;丿JC7adnr:芒務(wù)*峯糜昔黝曲固早苜率丑玉皇,圧巨乙業(yè)T安I2囲甜,申茸SSSASPU上40jj+SP心ijj+SPU品jj-

11、=JC7:(嚴(yán)諏儺骼稈舌宙卻刪M辦鯽辱丄X)芒務(wù)煮濟(jì)*輕舌刪細(xì)儺書豳豎宙送昔郛浴懈母回苗場(chǎng)+直涮的切至荃軌卑聲叫臨書鵰、那幽畔母:割齋產(chǎn)啣丄皿舌犁軌黠冊(cè)池出色豎割舌國(guó)書鵰郢出軽螂卿39鷄:尋皇喜鶏Ps-0TX1768-T區(qū)糜麥刃旳匚購(gòu)丄當(dāng)割1882晉負(fù)丑皿同畜西陰羽郵回刃宙送羽巨10!叭業(yè)0丄9鞏尸一出茸了爐o、2+Ie門上k丿M006I600l2V6plfalI+II+I0門上1+19-10vivi刃牙惡AeuTv2、2DeD廠2、1、1bIIp11DEb1psDMbIIp11sDEzbp、DMDEdp號(hào)Ps+sILDr-dx-dxDePHPS+HDtdx(dxJj/j1甘U1J_E2、Eg

12、。C-戀pithue+pou:T旦DrpjDhDDtDeDppDpDeDpHPI+lnlhLIHpI+IH+psDtDipDiDtDfDhDpduddrpMln+H+kDkDiudxdx(dxi;z1甘U1J_E2、Eg。D丁J4houh+v2、2HE+pouDh4D1_DMHP/?+IV2HP+psDt(DhDhD:5?Dhdp號(hào)PM+sDr-dxidxDhDpdudP0H+H-+DhDfudxdpOTX+XniQxiQx。能氷n、s、-si、0祐JEffil侏關(guān)州呂wgsfflsMm、SSIOST、CXI仝一Rr啟-/XQXQ4255+IThhJiIdHjdJ*aJrJ.J.J.rL.fi

13、sssl、總I宦notdp丄Pusp-L料Q舉-LLI-eeee対対-(ps+z(pp)+z(ps-対対-(ps+z(ps+z(ps-耕me-C-1(p+s+z(p+p)+z(p+ss-口me-ee-z+z(p+p)+z(p+p)+z(p+p)zz二zzn;:;:p+p+p)zZP9+ZP9+ZP9+LZ(p+p)+z(p+p)+z(p+p)riririeeee-p+p+ru-耕me-e-yee-(p+s+c(p+p)+-p+p)+EZ+w+Ezri廠啟1JW41cn、zznp+p+p)ri寸丄二于f+TIQ懇-耕me-e-ee-p+sz+z(p+sz+z(p+sz+忌寸+忌寸+忌寸丿f十4I

14、u啟工廠-+J啟啟XQ懇cc懇廠J4+4ri.du,A=aijdxjAAATOC o 1-5 h z111213A=AAA212223AAA3132335附件:隨體導(dǎo)數(shù)的偏導(dǎo)數(shù)表達(dá)(控制體/微元體?包含密度?)引論1:控制體和微元體的隨體導(dǎo)數(shù)表達(dá)式%=+v5=+u竺D曲dV=山dV+Ik(v-n)dS=Dtdtdtjdx砂+V.(Qv)dVdt_VVDV利用隨體導(dǎo)數(shù)物理定義和數(shù)學(xué)上導(dǎo)數(shù)定義(求極限方法)容易得到第一個(gè)公式,利用控制體積分量的隨體導(dǎo)數(shù)物理定義,也容易得到第二個(gè)公式,在流體力學(xué)教材中也很容易找到這兩種隨體導(dǎo)數(shù)的定義。為什么這么做,寫出這樣一個(gè)公式?因?yàn)殡S體導(dǎo)數(shù)是拉格朗日觀點(diǎn),隨體導(dǎo)

15、數(shù)非常符合物理思維,利用隨體導(dǎo)數(shù)很容易表達(dá)物理規(guī)律,例如牛頓第二定律F=ma,因此推導(dǎo)公式過(guò)程中經(jīng)常采用隨體導(dǎo)數(shù)。不過(guò)流場(chǎng)中物理量通常采用隨時(shí)間和空間變化的四維函數(shù),直接利用該函數(shù)無(wú)法得到隨體導(dǎo)數(shù),只能得到一些偏導(dǎo)數(shù),需要根據(jù)隨體導(dǎo)數(shù)的物理定義將隨體導(dǎo)數(shù)表達(dá)成合成偏導(dǎo)數(shù)形式。引論2:包含密度的控制體和微元體隨體導(dǎo)數(shù)在后續(xù)方程推導(dǎo)中經(jīng)常出現(xiàn)包含密度的隨體導(dǎo)數(shù)情況,將包含密度的隨體導(dǎo)數(shù)利用連續(xù)性方程進(jìn)行化簡(jiǎn),可以極大簡(jiǎn)化推導(dǎo)難度。包含密度的隨體導(dǎo)數(shù)利用了引論1+連續(xù)性方程,也就是隨體導(dǎo)數(shù)定義和連續(xù)性方程兩個(gè)規(guī)律,具體推導(dǎo)如下:fffpedV=(pe)+V-(pQv)idt-V-+pvV+V&dt=p型二列卩小+匸命枷)DtdtDtVdV(pv)dV=Bp型dVDt

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論