山東省德州市夏津2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁(yè)
山東省德州市夏津2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁(yè)
山東省德州市夏津2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁(yè)
山東省德州市夏津2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁(yè)
山東省德州市夏津2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1函數(shù)的圖象向右平移個(gè)單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實(shí)數(shù)的值為( )ABC2D2已知等差數(shù)列中,則數(shù)列的前10項(xiàng)和( )A100B210C380D4003點(diǎn)為不等式組所表示的平面區(qū)域上的動(dòng)點(diǎn),則的取值范

2、圍是( )ABCD4已知實(shí)數(shù)滿(mǎn)足,則的最小值為( )ABCD5歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱(chēng)為割圓術(shù)近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是ABCD6某公園新購(gòu)進(jìn)盆錦紫蘇、盆虞美人、盆郁金香

3、,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共( )種ABCD7是平面上的一定點(diǎn),是平面上不共線(xiàn)的三點(diǎn),動(dòng)點(diǎn)滿(mǎn)足 ,則動(dòng)點(diǎn)的軌跡一定經(jīng)過(guò)的( )A重心B垂心C外心D內(nèi)心8已知,復(fù)數(shù),且為實(shí)數(shù),則( )ABC3D-39自2019年12月以來(lái),在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級(jí)政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級(jí)要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個(gè)不同的住戶(hù)屬在鄂返鄉(xiāng)住戶(hù),負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個(gè)住戶(hù)家里都要有醫(yī)生去檢查

4、登記,則不同的分配方案共有( )A12種B24種C36種D72種10已知函數(shù),若,則的取值范圍是( )ABCD11設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),則使得成立的的取值范圍是( )ABCD12已知函數(shù),則方程的實(shí)數(shù)根的個(gè)數(shù)是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若滿(mǎn)足約束條件,則的最大值為_(kāi)14函數(shù)的定義域是_15已知數(shù)列滿(mǎn)足,若,則數(shù)列的前n項(xiàng)和_16設(shè),分別是橢圓C:()的左、右焦點(diǎn),直線(xiàn)l過(guò)交橢圓C于A,B兩點(diǎn),交y軸于E點(diǎn),若滿(mǎn)足,且,則橢圓C的離心率為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)如圖,在直角梯形中,為的中點(diǎn),沿

5、將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).()證明:平面平面垂直;()是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.18(12分)在中,為邊上一點(diǎn),.(1)求;(2)若,求.19(12分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對(duì)年銷(xiāo)售額y(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:y=+x2,y=ex+t,其中,t均為常數(shù),e為自然對(duì)數(shù)的底數(shù)現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷(xiāo)售額yi的數(shù)據(jù),i=1,2,12,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量

6、的值令ui=xi2,vi=lnyi(i=1,2,12),經(jīng)計(jì)算得如下數(shù)據(jù):xyi=112(xi-x)2i=112(yi-y)2uv20667702004604.20i=112(ui-u)2i=112(ui-u)(yi-y)i=112(vi-v)2i=112(xi-x)(vi-v)3125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和vi的相關(guān)系數(shù)為r2,請(qǐng)從相關(guān)系數(shù)的角度,選擇一個(gè)擬合程度更好的模型;(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷(xiāo)售額y需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量x是多少億元? 附

7、:相關(guān)系數(shù)r=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2,回歸直線(xiàn)y=a+bx中斜率和截距的最小二乘估計(jì)公式分別為:b=i=1n(xi-x)(yi-y)i=1n(xi-x)2,a=y-bx; 參考數(shù)據(jù):308=477,909.4868,e4.49989020(12分)已知函數(shù)(1)若,求證:(2)若,恒有,求實(shí)數(shù)的取值范圍.21(12分)已知雙曲線(xiàn)及直線(xiàn).(1)若l與C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;(2)若l與C交于A,B兩點(diǎn),O是原點(diǎn),且,求實(shí)數(shù)k的值.22(10分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項(xiàng)和為,若,成等比數(shù)列(1)求及;(2)設(shè),設(shè)數(shù)列

8、的前項(xiàng)和,證明:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】由函數(shù)的圖象向右平移個(gè)單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時(shí),取得最大值,即,當(dāng)時(shí),解得,故選C.點(diǎn)睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時(shí),取得最大值,求解可得實(shí)數(shù)的值.2B【解析】設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于

9、基礎(chǔ)題.3B【解析】作出不等式對(duì)應(yīng)的平面區(qū)域,利用線(xiàn)性規(guī)劃的知識(shí),利用的幾何意義即可得到結(jié)論【詳解】不等式組作出可行域如圖:,的幾何意義是動(dòng)點(diǎn)到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,故選:【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵4A【解析】所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【詳解】解:因?yàn)闈M(mǎn)足,則,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:【點(diǎn)睛】本題考查通過(guò)拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做

10、到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.5B【解析】初始:,第一次循環(huán):,繼續(xù)循環(huán);第二次循環(huán):,此時(shí),滿(mǎn)足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B6B【解析】間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開(kāi)有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問(wèn)題、分步

11、乘法計(jì)數(shù)原理,不相鄰問(wèn)題插空法是解題的關(guān)鍵,屬于中檔題.7B【解析】解出,計(jì)算并化簡(jiǎn)可得出結(jié)論【詳解】(),即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過(guò)ABC的垂心故選B【點(diǎn)睛】本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵8B【解析】把和 代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),利用虛部為0求得m值【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.9C【解析】先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個(gè)不同的住戶(hù)中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點(diǎn)睛】此題考查的是排列組合知識(shí)

12、,解此類(lèi)題時(shí)一般先組合再排列,屬于基礎(chǔ)題.10B【解析】對(duì)分類(lèi)討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.11D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x(0,1)時(shí),g(x)0,lnx0,f(x)0;當(dāng)x(1,+)時(shí),g(x)0,f(x)0,(x2-1)f(x)0,(x2-1)f(x)0,(x2-1)f(x)0.綜上所述,使得(x2-1)f(x)0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中某些數(shù)學(xué)問(wèn)題從表面上

13、看似乎與函數(shù)的單調(diào)性無(wú)關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效12D【解析】畫(huà)出函數(shù) ,將方程看作交點(diǎn)個(gè)數(shù),運(yùn)用圖象判斷根的個(gè)數(shù)【詳解】畫(huà)出函數(shù)令有兩解 ,則分別有3個(gè),2個(gè)解,故方程的實(shí)數(shù)根的個(gè)數(shù)是3+2=5個(gè)故選:D【點(diǎn)睛】本題綜合考查了函數(shù)的圖象的運(yùn)用,分類(lèi)思想的運(yùn)用,數(shù)學(xué)結(jié)合的思想判斷方程的根,難度較大

14、,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。134【解析】作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線(xiàn),經(jīng)過(guò)點(diǎn)時(shí),.14【解析】由,得,所以,所以原函數(shù)定義域?yàn)?,故答案?15【解析】,求得的通項(xiàng),進(jìn)而求得,得通項(xiàng)公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,,故答案為【點(diǎn)睛】本題考查求等差數(shù)列數(shù)列通項(xiàng),等比數(shù)列求和,熟記等差等比性質(zhì),熟練運(yùn)算是關(guān)鍵,是基礎(chǔ)題.16【解析】采用數(shù)形結(jié)合,計(jì)算以及,然后根據(jù)橢圓的定義可得,并使用余弦定理以及,可得結(jié)果.【詳解】如圖由,所以由,所以又,則所以所以化簡(jiǎn)可得:則故答案為:【點(diǎn)睛】本題考查橢圓的定義以及余弦定理

15、的使用,關(guān)鍵在于根據(jù)角度求出線(xiàn)段的長(zhǎng)度,考查分析能力以及計(jì)算能力,屬中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17()見(jiàn)解析 ()存在,此時(shí)為的中點(diǎn).【解析】()證明平面,得到平面平面,故平面平面,平面,得到答案.()假設(shè)存在點(diǎn)滿(mǎn)足題意,過(guò)作于,平面,過(guò)作于,連接,則,過(guò)作于,連接,是二面角的平面角,設(shè),計(jì)算得到答案.【詳解】(),平面.又平面,平面平面,而平面,平面平面,由,知,可知平面,又平面,平面平面.()假設(shè)存在點(diǎn)滿(mǎn)足題意,過(guò)作于,由知,易證平面,所以平面,過(guò)作于,連接,則(三垂線(xiàn)定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,依題意知,

16、即,解得,此時(shí)為的中點(diǎn).綜上知,存在點(diǎn),使得二面角的余弦值,此時(shí)為的中點(diǎn).【點(diǎn)睛】本題考查了面面垂直,根據(jù)二面角確定點(diǎn)的位置,意在考查學(xué)生的空間想象能力和計(jì)算能力,也可以建立空間直角坐標(biāo)系解得答案.18(1);(2)4【解析】(1),利用兩角差的正弦公式計(jì)算即可;(2)設(shè),在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1),所以, .(2),設(shè),在中,由正弦定理得,.【點(diǎn)睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.19(1)模型y=ex+t的擬合程度更好;(2)(i)v=0.02x+3.84;(ii)32.99億元.【解析】(1

17、)由相關(guān)系數(shù)求出兩個(gè)系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線(xiàn)性回歸方程,從而得出y關(guān)于x的回歸方程;(ii)把y=90代入(i)中的回歸方程可得x值【詳解】本小題主要考查回歸分析等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識(shí),考查統(tǒng)計(jì)與概率思想、分類(lèi)與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性解:(1)r1=i=112(ui-u)(yi-y)i=112(ui-u)2i=112(yi-y)2=215003125000200=2150025000=4350=0.86,r2=i=112(xi-x)(vi-v)i=11

18、2(xi-x)2i=112(vi-v)2=147700.308=14770.2=10110.91,則r1r2,因此從相關(guān)系數(shù)的角度,模型y=ex+t的擬合程度更好 (2)(i)先建立U額R0關(guān)于x的線(xiàn)性回歸方程.由y=ex+t,得lny=t+x,即v=t+x由于=i=112(xi-x)(vi-v)i=112(xi-x)2=147700.018,t=v-x=4.20-0.01820=3.84,所以U額R0關(guān)于x的線(xiàn)性回歸方程為v=0.02x+3.84, 所以lny=0.02x+3.84,則y=e0.02x+3.84.(ii)下一年銷(xiāo)售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84

19、得,90=e0.02x+3.84,又e4.499890,所以4.49980.02x+3.84,所以x4.4998-3.840.02=32.99,所以預(yù)測(cè)下一年的研發(fā)資金投入量約是32.99億元【點(diǎn)睛】本小題主要考查拋物線(xiàn)的定義、拋物線(xiàn)的標(biāo)準(zhǔn)方程、直線(xiàn)與拋物線(xiàn)的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性20(1)見(jiàn)解析;(2)(,0【解析】(1)利用導(dǎo)數(shù)求x0時(shí),f(x)的極大值為,即證(2)等價(jià)于k,x0,令g(x),x0,再求函數(shù)g(x)的最小值得解.【詳解】(1)函數(shù)f(x)x2e3x,f(x)2xe3x+3x2e3xx(3x+2)e3x由f(x)0,得x或x0;由f(x)0,得,f(x)在(,)內(nèi)遞增,在(,0)內(nèi)遞減,在(0,+)內(nèi)遞增,f(x)的極大值為,當(dāng)x0時(shí),f(x)(2)x2e3x(k+3)x+2lnx+1,k,x0,令g(x),x0,則g(x),令h(x)x2(1+3x)e3x+2lnx1,則h(x)在(0,+)上單調(diào)遞

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論