版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1以下關(guān)于的命題,正確的是A函數(shù)在區(qū)間上單調(diào)遞增B直線需是函數(shù)圖象的一條對(duì)稱軸C點(diǎn)是函數(shù)圖象的一個(gè)對(duì)稱中心D將函數(shù)圖象向左平移需個(gè)單位,可得到的圖象2若P是的充分不必要條件,則p是q的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件3在三棱錐中,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為( )ABCD4高三珠海一模中,經(jīng)抽樣分析,全市理科數(shù)學(xué)成績(jī)X近似服從正態(tài)分布,且從中隨機(jī)抽取參加此次考試的學(xué)生500名,估
3、計(jì)理科數(shù)學(xué)成績(jī)不低于110分的學(xué)生人數(shù)約為( )A40B60C80D1005若函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為( )ABCD6已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( )ABCD7如圖,平面與平面相交于,點(diǎn),點(diǎn),則下列敘述錯(cuò)誤的是( )A直線與異面B過只有唯一平面與平行C過點(diǎn)只能作唯一平面與垂直D過一定能作一平面與垂直8關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是( )ABCD9甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙丙丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的
4、概率是( )ABCD10已知,則下列關(guān)系正確的是( )ABCD11已知,則( )ABCD12已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知向量,則_.14函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為_.15設(shè)實(shí)數(shù)x,y滿足,則點(diǎn)表示的區(qū)域面積為_.16一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來(lái)的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17(12分)已知是圓:的直徑,動(dòng)圓過,兩點(diǎn),且與直線相切.(1)若直線
5、的方程為,求的方程;(2)在軸上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恰好與軸相切?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.18(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時(shí)所對(duì)應(yīng)的的值.19(12分)等差數(shù)列的前項(xiàng)和為,已知,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求使成立的的最小值20(12分)2019年是五四運(yùn)動(dòng)100周年.五四運(yùn)動(dòng)以來(lái)的100年,是中國(guó)青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國(guó)、青春之民族的100年.為繼承和發(fā)揚(yáng)五四精神在青年節(jié)到來(lái)之際,學(xué)校組織“五四
6、運(yùn)動(dòng)100周年”知識(shí)競(jìng)賽,競(jìng)賽的一個(gè)環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機(jī)抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對(duì)每道A類題的概率都是,答對(duì)每道B類題的概率都是,且各題答對(duì)與否相互獨(dú)立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對(duì)題目的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.21(12分)已知某種細(xì)菌的適宜生長(zhǎng)溫度為1227,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/14161820222426繁殖數(shù)量/個(gè)2530385066120218
7、對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:20784.11123.8159020.5其中,.(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說(shuō)明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,參考數(shù)據(jù):.22(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.()求的極坐
8、標(biāo)方程和曲線的參數(shù)方程;()求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】利用輔助角公式化簡(jiǎn)函數(shù)得到,再逐項(xiàng)判斷正誤得到答案.【詳解】A選項(xiàng),函數(shù)先增后減,錯(cuò)誤B選項(xiàng),不是函數(shù)對(duì)稱軸,錯(cuò)誤C選項(xiàng),不是對(duì)稱中心,錯(cuò)誤D選項(xiàng),圖象向左平移需個(gè)單位得到,正確故答案選D【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性,對(duì)稱軸,對(duì)稱中心,平移,意在考查學(xué)生對(duì)于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡(jiǎn)三角函數(shù)是解題的關(guān)鍵.2B【解析】試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可由p是的充分不必要條件知
9、“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B考點(diǎn):邏輯命題3A【解析】設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得 ,在 及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)?,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)椋?,解?因?yàn)?,所?設(shè),易知平面ABC,則.因?yàn)椋?,即,解?所以球Q的半徑.故選:A【點(diǎn)睛】本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題4D【解析】由正態(tài)分布的性質(zhì),根據(jù)題意,得到,求出概率,再由題中數(shù)據(jù),即可求出結(jié)果.【詳解】由題意,成績(jī)X近似服從正態(tài)分布,則正
10、態(tài)分布曲線的對(duì)稱軸為,根據(jù)正態(tài)分布曲線的對(duì)稱性,求得,所以該市某校有500人中,估計(jì)該校數(shù)學(xué)成績(jī)不低于110分的人數(shù)為人,故選:.【點(diǎn)睛】本題考查正態(tài)分布的圖象和性質(zhì),考查學(xué)生分析問題的能力,難度容易.5C【解析】由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,則當(dāng)最大時(shí),求得,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題6C【解析】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓的半徑,
11、根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得, 三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.7D【解析】根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對(duì)選項(xiàng)中的命題判斷.【詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB
12、,CD共面,與,矛盾, 故正確.B. 根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C. 根據(jù)過一點(diǎn)有且只有一個(gè)平面與已知直線垂直知,故正確.D. 根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯(cuò)誤.故選:D【點(diǎn)睛】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.8A【解析】由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,因?yàn)?,所以的解集為,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計(jì)算求解能力與推理能力,屬于基礎(chǔ)題.9B【解析】將所有可能的情況全部枚舉出來(lái),再根據(jù)古典概型
13、的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.10A【解析】首先判斷和1的大小關(guān)系,再由換底公式和對(duì)數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因?yàn)?,所以,綜上可得.故選:A【點(diǎn)睛】本題考查了換底公式和對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題11D【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時(shí)單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時(shí)單調(diào)遞減,對(duì)選項(xiàng)逐一驗(yàn)證即可得到正確答案.【詳解】因?yàn)?,所以,所以是減函數(shù),又因?yàn)?,所以,所以,所以A
14、,B兩項(xiàng)均錯(cuò);又,所以,所以C錯(cuò);對(duì)于D,所以,故選D.【點(diǎn)睛】這個(gè)題目考查的是應(yīng)用不等式的性質(zhì)和指對(duì)函數(shù)的單調(diào)性比較大小,兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.12A【解析】由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。133【解析】由題意得,再代入中,計(jì)算即可得答案.【詳解】由題意可得,解得,.故
15、答案為:.【點(diǎn)睛】本題考查向量模的計(jì)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力,求解時(shí)注意向量數(shù)量積公式的運(yùn)用.14【解析】根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可【詳解】解:由,得,則,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵15【解析】先畫出滿足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫出實(shí)數(shù)x,y滿足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:【點(diǎn)睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.161【解析】根據(jù)均值
16、的定義計(jì)算【詳解】由題意,故答案為:1【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17(1)或. (2)存在,;【解析】(1)根據(jù)動(dòng)圓過,兩點(diǎn),可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設(shè),由動(dòng)圓與直線相切可得動(dòng)圓的半徑為;又由,及垂徑定理即可確定的值,進(jìn)而確定圓的方程.(2)方法一:設(shè),可得圓的半徑為,根據(jù),可得方程為并化簡(jiǎn)可得的軌跡方程為.設(shè),可得的中點(diǎn),進(jìn)而由兩點(diǎn)間距離公式表示出半徑,表示出到軸的距離,代入化簡(jiǎn)即可求得的值,進(jìn)而確定所過定點(diǎn)的坐標(biāo);方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點(diǎn)的坐標(biāo)
17、,根據(jù)到軸的距離可得等量關(guān)系,進(jìn)而確定所過定點(diǎn)的坐標(biāo).【詳解】(1)因?yàn)檫^點(diǎn),所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標(biāo)原點(diǎn)對(duì)稱,所以在直線上,故可設(shè).因?yàn)榕c直線相切,所以的半徑為.由已知得,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設(shè),由已知得的半徑為,.由于,故可得,化簡(jiǎn)得的軌跡方程為.設(shè),則得,的中點(diǎn),則以為直徑的圓的半徑為:,到軸的距離為,令,化簡(jiǎn)得,即,故當(dāng)時(shí),式恒成立.所以存在定點(diǎn),使得以為直徑的圓與軸相切.法二:設(shè),由已知得的半徑為,.由于,故可得,化簡(jiǎn)得的軌跡方程為.設(shè),因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,點(diǎn)在拋物線上,所以,線段的中點(diǎn)的坐標(biāo)為,則到軸的距離
18、為,而,故以為徑的圓與軸切,所以當(dāng)點(diǎn)與重合時(shí),符合題意,所以存在定點(diǎn),使得以為直徑的圓與軸相切.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程求法,動(dòng)點(diǎn)軌跡方程的求法,拋物線定義及定點(diǎn)問題的解法綜合應(yīng)用,屬于難題.18(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)的取值范圍是;對(duì)應(yīng)的的值為.【解析】(1)當(dāng)時(shí),求的導(dǎo)數(shù)可得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),且,利用導(dǎo)函數(shù),可得的范圍,再表達(dá),構(gòu)造新函數(shù)可求的取值范圍,從而可求取到最小值時(shí)所對(duì)應(yīng)的的值【詳解】(1)函數(shù)由條件得函數(shù)的定義域:,當(dāng)時(shí),所以:,時(shí),當(dāng)時(shí),當(dāng),時(shí),則函數(shù)的單調(diào)增區(qū)間為:,單調(diào)遞減區(qū)間為:,;(2)由條件得:,由條件得有兩根:,滿足,
19、可得:或;由,可得:,函數(shù)的對(duì)稱軸為,所以:,;,可得:,則:,所以:;所以:,令,則,因?yàn)椋簳r(shí),所以:在,上是單調(diào)遞減,在,上單調(diào)遞增,因?yàn)椋海?),(1),所以,;即的取值范圍是:,;,所以有,則,;所以當(dāng)取到最小值時(shí)所對(duì)應(yīng)的的值為;【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和單調(diào)區(qū)間問題,考查利用導(dǎo)數(shù)求函數(shù)的最值,體現(xiàn)了轉(zhuǎn)化的思想方法,屬于難題19(1);(2)的最小值為19.【解析】(1)根據(jù)條件列方程組求出首項(xiàng)、公差,即可寫出等差數(shù)列的通項(xiàng)公式;(2)根據(jù)等差數(shù)列前n項(xiàng)和化簡(jiǎn),利用裂項(xiàng)相消法求和,解不等式即可求解.【詳解】(1)等差數(shù)列的公差設(shè)為,可得,解得,則;(2),前n項(xiàng)和為,即,可得,即,則的最小值為19.【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,等差數(shù)列的前n項(xiàng)和,裂項(xiàng)相消法求和,屬于中檔題20(1);(2)分布列見解析,期望為【解析】(1)甲同學(xué)至少抽到2道B類題包含兩個(gè)事件:一個(gè)抽到2道B類題,一個(gè)是抽到3個(gè)B類題,計(jì)算出抽法數(shù)后可求得概率;(2)的所有可能值分別為,依次計(jì)算概率得分布列,再由期望公式計(jì)算期望【詳解】(1)令“甲同學(xué)至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,;(2)的所有可能值分別為,的分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 形勢(shì)政策課程設(shè)計(jì)
- 幼兒園天氣美育課程設(shè)計(jì)
- 創(chuàng)新型教師培養(yǎng)的策略與實(shí)踐路徑探索
- 以體樹人的策略及實(shí)施路徑
- 小球動(dòng)態(tài)碰撞C語(yǔ)言課程設(shè)計(jì)
- 學(xué)校美育浸潤(rùn)行動(dòng)的創(chuàng)新與發(fā)展
- 探索農(nóng)場(chǎng)自然課程設(shè)計(jì)
- 幼兒園教師專業(yè)成長(zhǎng)秋季研討會(huì)匯報(bào)
- 醫(yī)院流程優(yōu)化中的醫(yī)防融合實(shí)踐
- 青少年心理健康教育:從理論到實(shí)踐的策略與路徑
- 小兒推拿調(diào)理脾胃(一)
- 零售業(yè)收銀員操作培訓(xùn)
- 四年級(jí)美術(shù) 16. 印染“花布”【全國(guó)一等獎(jiǎng)】
- 初中美術(shù)八年級(jí)上冊(cè)服裝設(shè)計(jì)(全國(guó)一等獎(jiǎng))
- 導(dǎo)醫(yī)接待與患者情緒管理
- 化工行業(yè)基礎(chǔ)知識(shí)培訓(xùn)課件
- 斜拉橋施工技術(shù)
- 《影視行業(yè)無(wú)形資產(chǎn)評(píng)估的案例分析-以華誼兄弟為例》12000字
- 新課標(biāo)下小學(xué)美術(shù)課程設(shè)計(jì)
- 國(guó)開電大操作系統(tǒng)-Linux系統(tǒng)使用-實(shí)驗(yàn)報(bào)告
- 電氣技術(shù)協(xié)議
評(píng)論
0/150
提交評(píng)論