版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、Good is good, but better carries it.精益求精,善益求善。chap7估計理論-設(shè)某地區(qū)的風(fēng)速SKIPIF10服從SKIPIF10,密度函數(shù)為SKIPIF10SKIPIF10,試按頻率估計概率的原理(?),在SKIPIF10,n=5求百年一遇的最大風(fēng)速SKIPIF10值(即SKIPIF10大于SKIPIF10的概率為1%).解由已知易求得SKIPIF10的特征函數(shù)為SKIPIF10.設(shè)SKIPIF10為樣本,則SKIPIF10的特征函數(shù)為SKIPIF10.現(xiàn)記SKIPIF10,則SKIPIF10的特征函數(shù)為SKIPIF10.由此可知,SKIPIF10服從自由度為
2、SKIPIF10的SKIPIF10分布.由題意知,欲求SKIPIF10值,使得SKIPIF10,即SKIPIF10.由SKIPIF10知SKIPIF10,從而SKIPIF10.對任一地區(qū),地震的震級數(shù)SKIPIF10與其發(fā)生的次數(shù)n之間有經(jīng)驗公式SKIPIF10SKIPIF10SKIPIF10,試按頻率估計概率原理,求震級SKIPIF10的分布函數(shù).解由題意知震級SKIPIF10小于SKIPIF10的頻率為SKIPIF10用頻率估計概率原理,震級SKIPIF10小于SKIPIF10的概率為可用上式估計SKIPIF10從而SKIPIF10的分布函數(shù)為SKIPIF10.設(shè)總體SKIPIF10服從正
3、態(tài)SKIPIF10今觀察了二十次,只記錄是否為負值,若事件“SKIPIF10”出現(xiàn)了十四次,試按頻率估計概率的原理,求估計值SKIPIF10的估計值.解設(shè)SKIPIF10,則SKIPIF10.于是SKIPIF10.由SKIPIF10知SKIPIF10,從而SKIPIF10.設(shè)總體SKIPIF10的密度函數(shù)為SKIPIF10,SKIPIF10為其樣本,求參數(shù)SKIPIF10的極大似然估計量.(1)SKIPIF10;(2)SKIPIF10(3)SKIPIF10(4)SKIPIF10解(1)我們知道,SKIPIF10的似然函數(shù)為SKIPIF10,取對數(shù)得,SKIPIF10.將SKIPIF10按從小到
4、大的順序排列,記作SKIPIF10,則有SKIPIF10當(dāng)SKIPIF10時,因為SKIPIF10在SKIPIF10處取最大值,所以SKIPIF10.當(dāng)SKIPIF10時,因為SKIPIF10在滿足SKIPIF10的一切SKIPIF10處都取最大值,所以滿足SKIPIF10的一切SKIPIF10都是SKIPIF10的極大似然估計.5、設(shè)總體SKIPIF10服從二項分布SKIPIF10,SKIPIF10為正整數(shù),SKIPIF10為其樣本,求SKIPIF10及SKIPIF10的矩法估計量.解由二項分布可知,SKIPIF10.由方程組SKIPIF10解得SKIPIF10.6、設(shè)總體SKIPIF10服
5、從對數(shù)正態(tài)分布,密度函數(shù)為SKIPIF10,SKIPIF10為其樣本,求SKIPIF10及SKIPIF10的矩法估計量.解由已知得SKIPIF10,SKIPIF10.則矩估計方程組為SKIPIF10.令SKIPIF10,則方程組變成SKIPIF10顯然SKIPIF10,由此解得SKIPIF10,即SKIPIF10,從而解得SKIPIF10.7、設(shè)SKIPIF10為電子元件的失效時間(單位:小時),其密度函數(shù)為SKIPIF10(即隨機變量SKIPIF10具有在左邊SKIPIF10截頭的,參數(shù)為SKIPIF10的指數(shù)分布).假定n個元件獨立地試驗并記錄其失效時間分別為SKIPIF10.(1)當(dāng)SK
6、IPIF10為已知時,求SKIPIF10的極大似然法估計量;(2)當(dāng)SKIPIF10已知時,求SKIPIF10的極大似然法估計.解(1)SKIPIF10的似然函數(shù)為SKIPIF10,取對數(shù)得SKIPIF10.令SKIPIF10,解得SKIPIF10.(2)SKIPIF10的似然函數(shù)為SKIPIF10,取對數(shù)得SKIPIF10,顯然要使SKIPIF10最大,只須SKIPIF10最小.取SKIPIF10,SKIPIF108、設(shè)總體SKIPIF10服從正態(tài)SKIPIF10SKIPIF10為其樣本.(1)求k,使SKIPIF10為SKIPIF10的無偏估計量;(2)求k,使SKIPIF10為SKIPI
7、F10的無偏估計量.解(1)SKIPIF10.SKIPIF10令SKIPIF10,則SKIPIF10SKIPIF10SKIPIF10SKIPIF10.從而SKIPIF10.故當(dāng)SKIPIF10時,SKIPIF10,這時SKIPIF10為SKIPIF10的無偏估計量.(2)SKIPIF10SKIPIF10SKIPIF10SKIPIF10.當(dāng)SKIPIF10時,SKIPIF10,這時SKIPIF10為SKIPIF10的無偏估計量.9、設(shè)總體SKIPIF10的數(shù)學(xué)期望為SKIPIF10,方差為SKIPIF10,SKIPIF10是它的樣本,SKIPIF10為SKIPIF10的任一線性無偏估計量.證明其
8、樣本平均SKIPIF10與SKIPIF10的相關(guān)系數(shù)為SKIPIF10.證明相關(guān)系數(shù)SKIPIF10,故要證其樣本平均SKIPIF10與SKIPIF10的相關(guān)系數(shù)為SKIPIF10.只需證SKIPIF10.由于SKIPIF10是SKIPIF10線性無偏估計量,故可令SKIPIF10,SKIPIF10.SKIPIF10SKIPIF10SKIPIF10SKIPIF10.而SKIPIF10SKIPIF10.于是SKIPIF10SKIPIF10SKIPIF10.從而知SKIPIF10.所以SKIPIF10.10、設(shè)總體SKIPIF10服從正態(tài)SKIPIF10SKIPIF10,SKIPIF10為其樣本,
9、試證下述三個估計量(1)SKIPIF10;(2)SKIPIF10;(3)SKIPIF10都是SKIPIF10的無偏估計量,請問哪一個方差最小.11、設(shè)總體SKIPIF10的數(shù)學(xué)期望為SKIPIF10,SKIPIF10及SKIPIF10分別為參數(shù)SKIPIF10的兩個無偏估計量,它們的方差分別為SKIPIF10及SKIPIF10,相關(guān)系數(shù)為SKIPIF10,試確定常數(shù)SKIPIF10,使得SKIPIF10有最小方差.解SKIPIF10SKIPIF10SKIPIF10SKIPIF10.令SKIPIF10,有SKIPIF10解得SKIPIF10從而SKIPIF10為保證SKIPIF10,要求SKIP
10、IF10.12、設(shè)總體SKIPIF10服從正態(tài)SKIPIF10總體SKIPIF10服從正態(tài)SKIPIF10SKIPIF10為總體SKIPIF10的樣本,SKIPIF10為總體SKIPIF10的樣本,且這兩個樣本相互獨立.(1)試求SKIPIF10的無偏估計量SKIPIF10;(2)如果SKIPIF10固定,問SKIPIF10及SKIPIF10如何配置,可使SKIPIF10的方差達到最小.解:(1)SKIPIF10,從而SKIPIF10可作為SKIPIF10的無偏估計量.(2)由于SKIPIF10,于是問題變?yōu)楫?dāng)SKIPIF10固定,如何配置SKIPIF10及SKIPIF10,使得SKIPIF1
11、0最小.14、設(shè)總體SKIPIF10的密度函數(shù)為SKIPIF10SKIPIF10為其樣本.試證SKIPIF10及SKIPIF10都是參數(shù)SKIPIF10的無偏估計量,問哪個有效?解我們知道SKIPIF10,SKIPIF10.由已知得SKIPIF10,從而知SKIPIF10,所以SKIPIF10SKIPIF10.SKIPIF10SKIPIF10.故SKIPIF10及SKIPIF10均是參數(shù)SKIPIF10的無偏估計.又SKIPIF10SKIPIF10故SKIPIF10.SKIPIF10SKIPIF10.從而SKIPIF10.因此SKIPIF10,從而SKIPIF10更有效.15、設(shè)SKIPIF1
12、0及SKIPIF10是參數(shù)SKIPIF10的兩個獨立的無偏估計量,且SKIPIF10的方差為SKIPIF10的方差的兩倍,試確定常數(shù)SKIPIF10及SKIPIF10,使得SKIPIF10為參數(shù)SKIPIF10的無偏估計量,并且在所有這樣的線性估計中方差最小.解由已知得SKIPIF10,且SKIPIF10.為使SKIPIF10,則SKIPIF10.下面我們來確定SKIPIF10及SKIPIF10,使得SKIPIF10最小.SKIPIF10SKIPIF10SKIPIF10.易知,當(dāng)SKIPIF10時,SKIPIF10取得最小值.故當(dāng)SKIPIF10,SKIPIF10時,SKIPIF10為最小線性
13、無偏估計.16、設(shè)SKIPIF10和SKIPIF10分別是參數(shù)SKIPIF10的可估計函數(shù)SKIPIF10和SKIPIF10的最優(yōu)無偏估計量,試證SKIPIF10是SKIPIF10的最優(yōu)無偏估計量,其中SKIPIF10為常數(shù).解由于SKIPIF10與SKIPIF10分別為參數(shù)SKIPIF10的可估計函數(shù)SKIPIF10和SKIPIF10的最優(yōu)無偏估計量,故由定理7.2.1,對任意滿足SKIPIF10的SKIPIF10有SKIPIF10,SKIPIF10.于是SKIPIF10且SKIPIF10.再一次應(yīng)用定理7.2.1可知SKIPIF10是SKIPIF10的最優(yōu)無偏估計量.17、設(shè)總體SKIPI
14、F10服從正態(tài)SKIPIF10,總體SKIPIF10服從正態(tài)SKIPIF10,SKIPIF10為總體SKIPIF10的樣本,SKIPIF10為總體SKIPIF10的樣本,且這兩個樣本相互獨立.(1)試建立SKIPIF10的置信水平為SKIPIF10的區(qū)間估計;(2)假定SKIPIF10,試建立SKIPIF10的置信水平為SKIPIF10的區(qū)間估計.解:(1)由抽樣分布定理知SKIPIF10,SKIPIF10.令SKIPIF10,則SKIPIF10.對于給定的置信度SKIPIF10,查表得SKIPIF10與SKIPIF10,使得SKIPIF10.從而得SKIPIF10的置信區(qū)間為SKIPIF10
15、.(2)假設(shè)SKIPIF10.由已知得SKIPIF10,SKIPIF10,故SKIPIF10,從而SKIPIF10,于是對于給定的置信度SKIPIF10,查正態(tài)分布表得SKIPIF10,從而得SKIPIF10的置信區(qū)間為SKIPIF10,SKIPIF10.18、設(shè)總體SKIPIF10服從正態(tài)SKIPIF10,總體SKIPIF10服從正態(tài)SKIPIF10,其中SKIPIF10未知,SKIPIF10及SKIPIF10分別為其樣本,且這兩個樣本相互獨立.求SKIPIF10的置信水平為SKIPIF10的區(qū)間估計.(這個題出得沒什么意義,略過).19、設(shè)總體SKIPIF10服從正態(tài)SKIPIF10,已知
16、SKIPIF10,試分別求置信水平為SKIPIF10的SKIPIF10及SKIPIF10的區(qū)間估計.解由已知得SKIPIF10SKIPIF10SKIPIF10SKIPIF10從而SKIPIF10.根據(jù)SKIPIF10查分布表得SKIPIF10于是知SKIPIF10的置信區(qū)間為SKIPIF10即SKIPIF10.下求SKIPIF10的區(qū)間估計.查表得SKIPIF10.于是知置信區(qū)間為SKIPIF10即SKIPIF10.20、若從自動車床加工的一批零件中隨機抽取10個,測得其尺寸與規(guī)定尺寸的偏差(單位:微米)分別為:2、1、-2、3、2、4、-2、5、3、4.零件尺寸的偏差記作SKIPIF10,假設(shè)總體SKIPIF10服從正態(tài)SKIPIF10,試求SKIPIF10及SKIPIF10的無偏估計量,并求置信水平為SKIPIF10的區(qū)間估計.解:易知SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人教育產(chǎn)品居間合同范本正規(guī)范4篇
- 二零二五年度車輛抵押貸款監(jiān)管協(xié)議3篇
- 二零二五版幼兒園幼兒體育活動組織與指導(dǎo)合同4篇
- 建筑裝飾設(shè)計合同(2篇)
- 工廠勞務(wù)合同范本(2篇)
- 全新業(yè)務(wù)2025年度融資租賃合同3篇
- 2025年度建筑工地挖掘機駕駛員勞動合同范本2篇
- 蘑菇水塔施工方案
- AI醫(yī)療應(yīng)用研究模板
- 二零二五年度綠色環(huán)保抹灰材料供應(yīng)承包合同4篇
- 《天潤乳業(yè)營運能力及風(fēng)險管理問題及完善對策(7900字論文)》
- 醫(yī)院醫(yī)學(xué)倫理委員會章程
- xx單位政務(wù)云商用密碼應(yīng)用方案V2.0
- 農(nóng)民專業(yè)合作社財務(wù)報表(三張報表)
- 動土作業(yè)專項安全培訓(xùn)考試試題(帶答案)
- 大學(xué)生就業(yè)指導(dǎo)(高職就業(yè)指導(dǎo)課程 )全套教學(xué)課件
- 死亡病例討論總結(jié)分析
- 第二章 會展的產(chǎn)生與發(fā)展
- 空域規(guī)劃與管理V2.0
- JGT266-2011 泡沫混凝土標(biāo)準規(guī)范
- 商戶用電申請表
評論
0/150
提交評論