E4的改進—因子分析模型L的教學案例復習進程_第1頁
E4的改進—因子分析模型L的教學案例復習進程_第2頁
E4的改進—因子分析模型L的教學案例復習進程_第3頁
E4的改進—因子分析模型L的教學案例復習進程_第4頁
E4的改進—因子分析模型L的教學案例復習進程_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、Good is good, but better carries it.精益求精,善益求善。E4的改進因子分析模型L的教學案例-因子分析教學案例的改進教育部人文社會科學研究規(guī)劃基金項目資助,項目批準號:09YJA910002;2009教育部人文社會科學重點研究基地重大項目資助,課題名稱:多元統(tǒng)計分析及其應用的統(tǒng)計理論研究;廣東商學院科學研究重點項目資助,項目批準號:08ZD11001。因子分析模型L的教學案例李俊揚1林海明3-5(1.貴州師范大學數(shù)學與計算機科學學院貴州貴陽5500012.廣東商學院經(jīng)濟貿易與統(tǒng)計學院廣東廣州5103203.廣東省電子商務市場應用技術重點實驗室廣東廣州51032

2、04.廣東商學院國民經(jīng)濟研究中心廣東廣州510320)摘要:迄今國內外流行的因子分析沒有解的優(yōu)良性結論,以至在教學案例上遺留了許多問題。為了解決這些問題,這里沿著國內外教材中因子分析教學案例的常規(guī)路徑,根據(jù)近期改進的、具有優(yōu)良性結論的因子分析模型L及其解等系列結論,依次給出了:因子分析模型L的綜合評價步驟,SPSS軟件運行命令,應用實例,注意事項等,力爭在教學案例上做到思路清晰、應用便捷、容易解決實際問題,為因子分析的案例教學提供一個可行的參考。關鍵詞:因子分析;教學案例;改進;因子分析模型L中圖文分類號O212文獻標識碼AO問題的提出多元統(tǒng)計分析目前是數(shù)理統(tǒng)計、統(tǒng)計、經(jīng)濟管理、生物等相關專業(yè)

3、本科、碩士、博士生的常規(guī)課程,因子分析教學案例是其中的主要內容,以具有代表性的Johnson.R.A,Wichern.D.W著1實用多元統(tǒng)計分析(2007)為例,因子分析教學案例的內容歸納有:在因子分析現(xiàn)行模型下,用主成分法、最大似然法、主因子法求出多個因子載荷陣,用加權最小二乘法、回歸法求出多個因子得分,具體有求樣本相關系數(shù)矩陣(或協(xié)差陣)及其特征值,初始因子載荷陣,旋轉后因子載荷陣,確定因子個數(shù),旋轉后因子得分,給出初始因子、旋轉后因子的命名。上述案例內容以降維、清晰解釋數(shù)據(jù)為目標,使得因子分析的應用得到了較好的深入,同時,遺留了較多問題:因子分析教材的案例中迄今不知哪個模型和解更好,缺乏

4、因子分析應用步驟的系統(tǒng)化等。為了找到更好的因子分析模型和解,2(2009)3(2007)提出了求因子分析精確解的思想,受到張堯庭、方開泰教授4(1982)中標準化主成分及其載荷陣等式表示近似原始變量關系式的啟發(fā),對因子分析模型引入了最優(yōu)化條件,找到了更具優(yōu)勢的方法-標準化主成分法,建立了更好的因子分析模型L,其解是標準化主成分或其旋轉(主成分法下因子載荷陣回歸的因子得分或其旋轉),該解對于給定(合適)的因子個數(shù)m,具有前m個因子的方差貢獻和達到最大、誤差(余)項方差和達到最小,能達到降維目的等。據(jù)此,5(2010)對1中因子分析的教學內容進行了簡化和改進。236(2008)等中給出了因子分析模

5、型L解決問題的實例,從而因子分析教學案例改進的條件已較成熟。因子分析教學案例改進的任務是:根據(jù)因子分析模型L及其解的理論,建立因子分析模型L中初始因子、旋轉后因子較系統(tǒng)的一個應用步驟,給出初始因子、旋轉后因子有關結果的一個SPSS軟件計算程序和解決問題的實例,指出應用中的一些注意事項等。以下依次完成這些任務,力爭在因子分析模型L的教學案例上做到思路清晰、應用便捷、容易解決實際問題,為因子分析的案例教學提供一個可行的參考(中國人民大學、華南師范大學、東北財經(jīng)大學、廣東商學院、內蒙古財經(jīng)學院、山東工商學院等高校,已經(jīng)或正在使用這些教學案例給相應專業(yè)的本科、碩士、博士進行教學)。1因子分析模型L用于

6、綜合評價的步驟與實例對于多元統(tǒng)計問題的解決,計算出有關模型的結果是一方面,同時能通過計算結果、原始數(shù)據(jù)進行數(shù)據(jù)分析,盡可能地解決實際問題同樣是重要的。以下給出初始因子、旋轉后因子較系統(tǒng)的應用步驟和實例。關于變量的總體相關陣通常是不知道的,通常用變量的樣本相關陣替代。因子分析模型L及其解和優(yōu)良性,數(shù)學符號見5。1.1初始因子分析的綜合評價步驟及其實例初始因子應用于綜合評價的步驟。指標的正向化(單獨計算)7,標準化;求變量的樣本相關陣及其特征值,主成分法下的初始因子載荷陣,旋轉后因子載荷陣;(要計算出多個)與比較,用因子載荷絕對值0、1兩極分化頻數(shù)對比表判斷(見表1.1.4),如果中行元素絕對值足

7、夠向0、1兩極分化,用初始因子進行分析2,繼續(xù)原始變量之間相關度很低或無關時,直接進行逐個指標分析,用作綜合分析(是正向化、標準化的)是適合的。確定初始因子個數(shù):用和因子與變量顯著相關的臨界值判斷,若因子與某些變量顯著相關,則選入該因子2,因子個數(shù)m、因子方差累計貢獻率隨之確定;初始因子的命名及其正向化:由的第i列,將與顯著相關的變量歸為一類,由這些變量的意義對因子進行命名(注意有些變量,可能與兩個因子顯著相關,命名中、分析中也要同時考慮好這些變量的聯(lián)系性影響)。正向化2:如果這類變量與的相關系數(shù)表明該類變量的意義是正向的,不變符號;如果意義是反向的,、同時乘上負號;計算寫出初始因子(用回歸的

8、因子得分);因為因子不相關,綜合起來可反映樣品的相對可比、不相關因子累加綜合狀況(不是反映多變量信息最大化時的樣品值狀況),以初始因子方差貢獻率為權數(shù)得綜合初始因子=;計算給出個初始因子樣品值矩陣、綜合初始因子樣品值并排序;用個初始因子樣品值做聚類分析,按綜合初始因子樣品值排名順序給出樣品分類結果;7結合樣品的分類結果,綜合初始因子、初始因子樣品值和排序,原始數(shù)據(jù),原始變量的意義,進行優(yōu)勢、劣勢、潛力狀況和影響因素等的綜合評價,給出較客觀、可靠的決策相關性建議。SPSS軟件初始因子有關結果計算過程:原始數(shù)據(jù)的正向化數(shù)據(jù)輸入或拷貝到數(shù)據(jù)窗口中,選擇AnalyzeDateReductionFact

9、or變量框中選入正向化的數(shù)據(jù)Descriptives選擇Initialsolution,Coeffi-cients,ContinueExtraction選擇PrincipalComponent,Correlationmatrix(數(shù)據(jù)標準化被執(zhí)行),Numberoffactor:m,Unrotatedfactorsolution,ScreenPlot(碎石圖),ContinueRotation選擇None,ContinueScores選擇SaveasVariables,Regression,Displayfactorscorecoefficientmatrix,ContinueOK。計算結果有

10、:樣本相關系數(shù)陣R、R的特征值、初始因子載荷陣、初始因子的標準化變量系數(shù)陣、初始因子的樣品值數(shù)據(jù)等,數(shù)據(jù)窗口中的fac1-1,facm-1為初始因子的樣品值(注意Extraction選擇PrincipalComponent)。旋轉后因子載荷陣的計算要用下述1.2中SPSS軟件旋轉后因子有關結果計算過程。表1.1.1原始數(shù)據(jù)正向化數(shù)據(jù)卷煙企業(yè)x1x2x3x4x5x6x7廣州一廠92.32116.97-29.952.915.499832140.9333廣州二廠109.41130.01-21.762.8348.7115755520.4667韶關廠60.01131.38-20.352.225.2759

11、28711南雄廠29.8999.96-64.441.19-1.111301440梅州廠58.95106.58-55.622.081.93537051南海廠76.04117.99-51.942.113.725185350.9633湛江廠39.43100.34-53.82.030.154050071廉江廠13.96100.19-86.320.551.04584150數(shù)據(jù)來源:梁苓,主成分分析法在企業(yè)經(jīng)濟效益綜合評價中的應用J.數(shù)學的實踐與認識,2002年第5期例1.16:2001年廣東卷煙工業(yè)企業(yè)廣州卷煙一廠、廣州卷煙二廠、韶關卷煙廠、南雄卷煙廠、梅州卷煙廠、南海卷煙廠、湛江卷煙廠和廉江卷煙廠(n

12、8)的經(jīng)濟效益變量為:x1-總資產貢獻率、x2-資本保值增值率、x3-資產負債率、x4-流動資產周轉率、x5-成本費用利潤率、x6-全員勞動生產率、x7-產品銷售率(p7),數(shù)據(jù)見表1.1.1。對這些企業(yè)作經(jīng)濟效益綜合評價。圖1例1.1相關陣特征值碎石圖正向化數(shù)據(jù)為表1.1.1(x3正向化公式為:x3。中性指標x7正向化公式為:表1.1.2相關陣特征值特征值比率累計率15.2490.74980.749821.1610.16580.9156為公認最好的中性值,這里=1,其余是正向的;或。表1.1.1x7的正向化用公式)。啟用SPSS11.0軟件因子分析過程進行因子分析,輸入例1正向化表1.1.1

13、的數(shù)據(jù),得特征值表1.1.2,相關陣特征值碎石圖圖1,初始因表1.1.3因子載荷陣變量初始旋轉后x10.965-0.0630.8720.417x20.872-0.0450.7830.387x30.9290.1560.7340.590 x40.9390.2520.6950.679x50.812-0.5460.975-0.079x60.940-0.2880.9610.209x70.5200.8280.0490.977子載荷陣、旋轉后因子載荷陣表1.1.3。表1.1.3的、比較得表1.1.4,即每列系數(shù)絕對值較往0、1兩極分化,故使用初始因子。前2個初始因子設為,變量正態(tài)分布下,取顯著水平為5%,顯

14、著相關的臨界值是r(6)=0.7078,由和顯著相關的臨界值r(6)判斷,因子,與變量顯著相關;其它初始因子與變量沒有顯著相關,故因子個數(shù)m=2,此時累計貢獻率為93.56%。因子的命名與正向化:初始因子設為,根據(jù)表1.1.3的表4因子載荷絕對值0、1兩極分化頻數(shù)對比表因子載荷區(qū)間頻數(shù)初始旋轉后0.9以上0.8-0.90.6-0.80.5-0.60.5以下4302531415合計1414,因子與x1-總資產貢獻率、x2-資本保值增值率、x3-資產負債率、x4-流動資產周轉率、x5-成本費用利潤率、x6-全員勞動生產率顯著正相關,故稱為內部效益因子;因子與x7-產品銷售率顯著正相關,故稱為外向效

15、益因子。與從初始因子得分系數(shù)得因子(Xi是xi的正向化、標準化變量):=0.184X1+0.166X2+0.177X3+0.179X4+0.155X5+0.179X6+0.1X7=-0.054X1-0.039X2+0.134X3+0.218X4-0.47X5-0.248X6+0.714X7以初始因子貢獻率為權數(shù)構造綜合因子函數(shù):=0.7498+0.1658=0.129X1+0.118X2+0.155X3+0.17X4+0.038X5+0.093X6+0.193X7,的評價意義:依次注重的是X7-產品銷售率(正向化)(0.193),X4-流動資產周轉率(0.17)、X3(正向化)-融資率(0.1

16、55)、X1-總資產貢獻率(0.129)的有效性,拉動的是X2-資本保值增值率(0.118)、X6-全員勞動生產率(0.093)、X5-成本費用利潤率(0.038)。表1.1.5初始因子、綜合初始因子值及排名卷煙企業(yè)序序序廣州二廠1.56711-1.64680.9021廣州一廠0.834720.368950.6872韶關廠0.530130.840130.5373南海廠0.223140.372440.2294梅州廠-0.214450.88302-0.015湛江廠-0.400460.95491-0.146南雄廠-1.06507-0.7346-0.927廉江廠-1.47528-1.0397-1.28

17、8計算各企業(yè)因子值、綜合因子值及排名見表1.1.5。將表1.1.5中無相關性的數(shù)據(jù)、作系統(tǒng)聚類分析,用歐氏距離、類平均法,按綜合初始因子值相應順序企業(yè)分為如下四類。第一類:廣州卷煙二廠;第二類:廣州卷煙一廠、韶關卷煙廠、南海卷煙廠;第三類:梅州卷煙廠、湛江卷煙廠;第四類:南雄卷煙廠、廉江卷煙廠?,F(xiàn)結合聚類分析結果、表1.1.5、初始因子得分系數(shù)、表1.1.1進行第一類、第三類(其余類似)綜合實證,提出建議。評價中注意初始因子得分系數(shù):x5-成本費用利潤率既對內部效益因子是好影響(系數(shù)為0.155),又對外向效益因子有較大的負影響(系數(shù)為0.47)。第一類:廣州卷煙二廠,綜合效益排名為第1(0.

18、902),其中內部效益因子得分值最高(1.5671)排名為第1,優(yōu)勢明顯,但外向效益因子(-1.646)為第8,取值遠低于平均水平,這一原因為x5-成本費用利潤率取值最高(48.71)、x7-產品銷售率取值(0.4667)列第6,屬于利潤高銷售較弱的情況,這使得綜合后內部效益因子得分值從最高(1.5671*0.75=1.175)被抵減(1.646*0.1658=0.273),綜合效益成為0.902,萬不可小視!建議:廣州卷煙二廠應繼續(xù)保持發(fā)揮x1-總資產貢獻率、x2-資本保值增值率、x3-資產負債率、x4-流動資產周轉率、x5-成本費用利潤率、x6-全員勞動生產率(內部效益因子)已有優(yōu)勢的條件

19、下,加強銷售力度,提高x7-產品銷售率(外向效益因子),定能進一步提高綜合效益,增強競爭力。第三類:梅州卷煙廠、湛江卷煙廠,綜合效益排名依次為第5(-0.01)、第6(-0.14),取值低于平均水平,其中內部效益因子排名依次為第5(-0.2144)、第6(-0.4004),取值低于平均水平,外向效益因子排名依次為第2(0.883)、第1(0.955),取值遠高于平均水平,這一原因為原始數(shù)據(jù)x5-成本費用利潤率分別取值1.9(第5)、0.15(第7),x7-產品銷售率均為第1,即該類企業(yè)做到了薄利保銷。建議:梅州卷煙廠、湛江卷煙廠應明確已有差距、挖掘內部管理與產品質量潛力,在既抓好自身已有立足的

20、前提下,向省內外卷煙企業(yè)優(yōu)點學習,提高綜合經(jīng)濟效益。1.2旋轉后因子分析的綜合評價步驟及其實例旋轉后因子分析的綜合評價步驟。指標的正向化(單獨計算)7,標準化;求變量的樣本相關陣及其特征值,主成分法下初始因子載荷陣,旋轉后因子載荷陣(要計算出多個),旋轉后方差貢獻;(要計算出多個)與比較,用因子載荷絕對值0、1兩極分化頻數(shù)對比表判斷(見表1.2.4),如果中行元素絕對值足夠向0、1兩極分化,用旋轉后因子進行分析2,繼續(xù)原始變量之間相關度很低或無關時,直接進行逐個指標分析,用作綜合分析(是標準化的)是適合的;確定旋轉后因子個數(shù)、因子方差累計貢獻率:用和兩變量顯著相關的臨界值判斷,若因子與某些變量

21、顯著相關,則選入該因子2,因子個數(shù)m、因子方差累計貢獻率隨之確定;旋轉后因子的命名及其正向化:由的第i列,將與顯著相關的變量歸為一類,由這些變量的意義對因子進行命名(注意有些變量,可能與兩個因子顯著相關,命名中、分析中也要同時考慮好這些變量的聯(lián)系性影響)。正向化2:如果這類變量與的相關系數(shù)表明該類變量的意義是正向的,不變符號;如果意義是反向的,、同時乘上負號;計算寫出旋轉后因子(用回歸的因子得分);因為因子不相關,綜合起來可反映樣品的因子累加綜合狀況(不是反映多變量信息最大化時的樣品值狀況),以旋轉后因子方差貢獻率為權數(shù)得旋轉后綜合因子2:=,;計算給出個旋轉后因子樣品值矩陣、旋轉后綜合因子樣

22、品值并排序;用個旋轉后因子樣品值做聚類分析,按旋轉后綜合因子樣品值排名順序給出樣品分類結果;6結合樣品的分類結果,旋轉后綜合因子、其樣品值和排序,原始數(shù)據(jù),原始變量的意義,進行優(yōu)勢、劣勢、潛力狀況和影響因素等的綜合評價,給出客觀、可靠的決策相關性建議。SPSS軟件旋轉后因子有關結果計算過程:原始數(shù)據(jù)的正向化數(shù)據(jù)輸入或拷貝到數(shù)據(jù)窗口中,選擇AnalyzeDateReductionFactor變量框中選入正向化的數(shù)據(jù)Descriptives選擇Initialsolution,Coeffi-cients,ContinueExtraction選擇PrincipalComponent,Correlati

23、onmatrix(數(shù)據(jù)標準化被執(zhí)行),Numberoffactor:m,Unrotatedfactorsolution,ScreenPlot(碎石圖),ContinueRotation選擇Varimax,Rotatedsolution,ContinueScores選擇SaveasVariables,Regression,Displayfactorscorecoefficientmatrix,ContinueOK。計算結果有:樣本相關系數(shù)陣R、R的特征值、旋轉后因子的方差貢獻、初始因子載荷陣、旋轉后因子載荷陣、旋轉后因子的標準化變量系數(shù)陣、旋轉后因子的樣品值數(shù)據(jù)等,數(shù)據(jù)窗口中的fac1-1,fa

24、cm-1為旋轉后因子的樣品值(注意Extraction選擇PrincipalComponent)。例1.2上市公司贏利能力的綜合評價,指標體系選為:-銷售凈利率、-資產凈利率、-凈資產收益率、-銷售毛利率,上市公司為青島海爾、貴州茅臺、五糧液等16家公司。數(shù)據(jù)見表1.2.1。表1.2.1上市公司贏利能力指標數(shù)據(jù)9公司x1x2x3x41.歌華有線2.五糧液3.用友軟件4.太太藥業(yè)5.浙江陽光6.煙臺萬華7.方正科技8.紅河光明9.貴州茅臺10.中鐵二局11.紅星發(fā)展12.伊利股份13.青島海爾14.湖北宜化15.雅戈爾16.福建南紙43.3117.1121.1129.5511.0017.632.

25、7329.1120.293.9922.654.435.407.0619.827.267.3912.136.038.628.4113.864.225.449.484.6411.137.308.902.7910.532.998.7317.297.0010.1311.8315.4117.166.0912.979.3514.314.3612.535.2418.556.9954.8944.2589.377325.2236.449.9656.2682.2313.0450.5129.0465.519.7942.0422.72數(shù)據(jù)來源:2003年上市公司速查手冊中國證券報社;飛虎證券網(wǎng)HYPERLINK。表1

26、.2.1數(shù)據(jù)全部是正向的;調用SPSS軟件因子分析主成分法下的過程命令,輸入表1.2.1的數(shù)據(jù),計算,經(jīng)過挑選,m=3時,得初始因子、旋轉后因子方差貢獻表1.2.2,相關陣特征值碎石圖圖2,初始因子載荷陣、旋轉后因子載荷陣表1.2.3;由表1.2.3得表1.2.4,即旋轉后因子載荷陣中行元素絕對值足夠向0或1兩極分化,故用旋轉后因子解;表1.2.2因子方差貢獻初始旋轉后貢獻貢獻率累計率貢獻貢獻率累計率11.8970.47430.47431.6660.41660.416621.5500.38740.86171.0880.27200.688630.3930.09830.96001.0850.271

27、30.9600前3個旋轉后設為、,變量正態(tài)分布下,取顯著水平為5%,顯著相關的臨界值是r(14)=0.58,由和顯著相關的臨界值r(14)判斷,因子、與變量顯著相關;其它因子與變量沒有顯著相關,故因子個數(shù)m=3,前三個因子解釋X的信息(累計方差貢獻率)為96%達到最大,誤差因子解釋變量X的信息為4達到最小,結論可靠。圖2例1.2相關陣特征值碎石圖因子命名與正向化:由和顯著相關的臨界值r(14)判斷,與x2-資產凈利率、x3-凈資產收益率顯著正相關,因子稱為資產贏利因子;與x1-銷售凈利率顯著正相關,因子稱為銷售凈利率因子;與x4-銷售毛利率顯著負相關,因子稱為銷售毛利率因子。因子、是正向化的;

28、用回歸的因子得分函數(shù)(Xi是正向化、標準化的變量):=-0.019X10.516X20.581X3-0.047X4=1.148X10.132X2-0.128X3-0.443X4表1.2.3因子載荷陣變量初始旋轉后x10.731-0.5130.4400.0180.9440.317x20.8180.5030.0140.8850.2600.267x30.3590.8970.0060.939-0.174-0.151x40.752-0.477-0.4460.0380.3160.944=-0.439X1+0.097X2-0.130X3+1.159X4以旋轉后方差貢獻率為權數(shù)構造綜合因子:=0.4166+0

29、.272+0.2713=0.1852X1+0.2772X2+0.172X3+0.1744X4表1.2.4因子載荷絕對值0、1兩極分化頻數(shù)對比表因子載荷區(qū)間頻數(shù)初始旋轉后0.9以上0.8-0.90.4-0.80.4以下02733108合計1212的評價意義:依次注重的是X2-資產凈利率(0.2772),X1-銷售凈利率(0.1852),拉動的是X4-銷售毛利率(0.1744)、X3-凈資產收益率(0.172)。旋轉后因子得分、綜合因子樣品值及排序見表1.2.5。調用SPSS軟件的聚類分析類平均法過程命令,選用歐氏距離,通過旋轉后因子得分、的樣品值對樣品進行聚類。分成4類,結合綜合因子得分樣品值排

30、名順序給出相應共性分類結果如下:第一類:煙臺萬華,五糧液,雅戈爾,紅星發(fā)展;第二類:貴州茅臺,青島海爾,用友軟件;第三類:太太藥業(yè),歌華有線,紅河光明;表1.2.5旋轉后因子、綜合因子樣品值公司序序序序煙臺萬華1.482310.41045-0.367482.51741五糧液1.450920.08927-0.085072.42202雅戈爾1.369330.29926-0.3801102.19443紅星發(fā)展0.863340.582340.061162.13814貴州茅臺0.36385-0.258691.650722.11575太太藥業(yè)-0.1578100.891530.917341.70236歌華

31、有線-0.5322112.59741-0.4659111.43387青島海爾0.26918-1.4628161.424530.40248用友軟件-1.012113-0.2660102.038410.23619紅河光明-1.1798141.144220.16805-0.538410浙江陽光0.16379-0.16608-0.697813-0.665011伊利股份0.33706-1.017714-0.37389-0.951412方正科技0.27097-1.051115-1.391816-2.202413中鐵二局-0.736412-0.728013-1.043015-3.150614福建南紙-1.3

32、43715-0.570912-0.685612-3.603615湖北宜化-1.608316-0.493111-0.769614-4.050916第四類:浙江陽光,伊利股份,方正科技,方正科技,中鐵二局,福建南紙,湖北宜化;結合前3個旋轉后因子得分樣品值的聚類分析結果,因子得分、綜合因子得分樣品值和排序,因子得分、綜合因子得分函數(shù),原始數(shù)據(jù),原始變量名稱的意義,進行優(yōu)勢、劣勢和影響因素等的綜合評價,給出客觀、可靠的決策相關性建議。第一類的煙臺萬華、五糧液、雅戈爾、紅星發(fā)展,綜合因子得分值依次排第1、2、3、4,全部高于平均水平。其資產贏利因子值依次排1、2、3、4,全部高于平均水平,優(yōu)勢明顯。銷

33、售凈利率因子值依次排5、7、6、4,全部高于平均水平,優(yōu)勢中上。銷售毛利率因子值依次排8、7、10、6,其中紅星發(fā)展、五糧液靠近平均水平,煙臺萬華、雅戈爾低于平均水平。即該類企業(yè)是綜合贏利能力很強的企業(yè),其中資產贏利能力尤其明顯,銷售凈利率略高于平均水平,銷售毛利率在平均水平附近的狀況。建議:該類企業(yè)在繼續(xù)保持資產贏利因子中x2-資產凈利率、x3-凈資產收益率明顯優(yōu)勢的情況下,銷售凈利率因子中,應提高產品質量和管理水平,降低成本,進一步提高銷售凈利率的贏利能力;銷售毛利率因子中,銷售毛利率提高的潛力較大,應向好的企業(yè)學習,改變銷售毛利率贏利能力較差的狀況。第二四類企業(yè)的綜合評價、建議方法與第一

34、類企業(yè)類似,此略。以上1.1和1.2的分析及結論,找到了研究對象的共性、優(yōu)勢、不足、差距狀況和原因等,用具有可控性的原始指標給出了可靠的決策相關性建議,驗證了本文方法的有效性,且因子分析法的應用趨向深入。1.3旋轉后因子解釋原始數(shù)據(jù)的能力沒有提高的實例請見10(2004)例6.1。2因子分析綜合評價中的注意事項指標需要進行正向化、標準化,以便進行指標的相對比較。因子的明確:計算出多個旋轉后因子載荷陣與初始因子載荷陣比較,用因子載荷絕對值0、1兩極分化頻數(shù)對比表判斷,確定旋轉后因子、初始因子哪個與變量相關性較高。確定因子個數(shù):用因子載荷陣和兩變量顯著相關的臨界值判斷,若因子與某些變量顯著相關,則

35、選入該因子,因子個數(shù)m、因子方差累計貢獻率隨之確定,這樣不至于丟掉原始變量(初始因子個數(shù)、旋轉后因子個數(shù)確定有時是不同的,如例1.2。設相關陣特征值碎石圖拐點處的序號為k,旋轉后因子個數(shù)m建議在k-1、k、k+1中挑選)。因子的正向化:由因子載荷陣的第i列,將與因子顯著相關的變量歸為一類,如果這類變量與的相關系數(shù)表明該類變量的意義是正向的,不變符號;如果意義是反向的,、同時乘上負號。這是因子進行綜合的前提。使用旋轉后因子時,因為旋轉后因子方差貢獻已發(fā)生改變,故旋轉后綜合因子以旋轉后因子方差貢獻率為權數(shù),即=,。這樣能保持方法的一致性。用前個因子樣品值做聚類分析,按旋轉后綜合因子樣品值排名順序給

36、出樣品分類結果,這樣既有樣品類的結果,又有樣品序的結果。結合樣品的分類結果,綜合因子、因子樣品值和排序,原始數(shù)據(jù),原始變量的意義,進行優(yōu)勢、劣勢、潛力狀況和影響因素等的綜合評價,盡可能給出客觀、可靠的決策相關性建議。參考文獻:1R.A.Johnson,D.W.Wichern,AppliedMultivariateStatisticalAnalysis(6thEd)M,UpperSaddleRiver,N.J:PearsonPrenticeHall,2007.中譯本:實用多元統(tǒng)計分析,陸璇等譯,清華大學出版社,2008。2林海明.因子分析模型的改進與應用J.數(shù)理統(tǒng)計與管理,2009,28(6):

37、998-1012.3林海明,王翊.因子分析模型L及其解是更好的J.統(tǒng)計研究,2007,8:77-83.4張堯庭,方開泰著.多元統(tǒng)計分析引論M.北京:科學出版社,1982.257-270.5林海明.因子分析教學內容的改進因子分析模型L的教學內容J.統(tǒng)計與決策,2009,23:156-159.6劉肇軍,林海明.初始因子與旋轉后因子的異同J.統(tǒng)計與決策,2008,19:21-24.7林海明.對主成分分析法運用中十個問題的解析J.統(tǒng)計與決策(理論版),2007,8:16-18.8峁詩松等編著.概率論與數(shù)理統(tǒng)計M.北京:中國統(tǒng)計出版社,2000:106,420.9HYPERLINK/grid2008/b

38、rief/result2.aspx?dbCatalog=%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93&dbprefix=SCDB&showtitle=%27%e6%9e%97%e6%b5%b7%e6%98%8e%27%e5%9c%a8%e4%b8%ad%e5%9b%bd%e5%ad%a6%e6%9c%af%e6%96%87%e7%8c%ae%e7%bd%91%e7%bb%9c%e5%87%ba%e7%89%88%e6%80%bb%e5%ba%93%e5%8f%91%e8%a1%a8%e7%9a%84%e6%96%87%e7%8c%ae&expertvalue=%e4%bd%9c%e8%80%85%3d%27%e6%9e%97%

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論