《“數(shù)形結(jié)合”思想在高中數(shù)學(xué)中的應(yīng)用》教案_第1頁
《“數(shù)形結(jié)合”思想在高中數(shù)學(xué)中的應(yīng)用》教案_第2頁
《“數(shù)形結(jié)合”思想在高中數(shù)學(xué)中的應(yīng)用》教案_第3頁
《“數(shù)形結(jié)合”思想在高中數(shù)學(xué)中的應(yīng)用》教案_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、學(xué)習(xí)必備歡迎下載“數(shù)形結(jié)合”思想在高中數(shù)學(xué)中的應(yīng)用一、課型:復(fù)習(xí)課二、授課教師:周建波授課對象:高2011級10班三、授課時間:2011年4月14日授課地點:成都七中學(xué)術(shù)二廳四、教學(xué)目標(biāo)1、知識目標(biāo):理解“數(shù)形結(jié)合”思想在高中解題中的重要應(yīng)用,并能掌握解決此類問題的基本技能2、能力目標(biāo):培養(yǎng)分析、解決問題的能力,體驗“數(shù)形結(jié)合”思想在高中數(shù)學(xué)中與“方程”,“不等式”,“函數(shù)”和“解析幾何”四大模塊的具體應(yīng)用.3、情感目標(biāo):(1)在探究過程中,鼓勵學(xué)生大膽猜測,大膽嘗試,培養(yǎng)學(xué)生勇于創(chuàng)新、敢于實踐的個性品質(zhì);(2)通過對問題的探究,理解事物間普遍聯(lián)系與辯證統(tǒng)一觀點,體驗成功的喜悅五、教學(xué)重點:理

2、解“數(shù)形結(jié)合”思想的實質(zhì),有效掌握該類問題的基本技能.六、教學(xué)難點:利用“數(shù)形結(jié)合”思想,通過“以形助數(shù)”,使復(fù)雜問題簡單化,抽象問題具體化,能夠變抽象思維為形象思維.七、教學(xué)過程教學(xué)環(huán)節(jié)師生活動學(xué)生活動設(shè)計意圖通過兩個簡考題熱身:觀察,思單的例題,已知向量a(cos75,sin75),b(cos15,sin15),求ab的值等于多少?考,演算。學(xué)生分析歸納解題思路體驗“數(shù)形結(jié)合”在解題中的便捷高效的優(yōu)勢一、考題熱身a答案:b1(教師利用投影儀展示學(xué)生的解答過程)學(xué)習(xí)必備歡迎下載數(shù)學(xué)是一門研究數(shù)量關(guān)系和空間形式的科學(xué)數(shù)形結(jié)合的特點:以形助數(shù)、以數(shù)解形數(shù)學(xué)結(jié)合的優(yōu)點:復(fù)雜問題簡單化、抽象問題具體

3、化著名數(shù)學(xué)家華羅庚先生曾經(jīng)這樣說到:數(shù)缺形時少直覺形少數(shù)時難入微數(shù)形結(jié)合思想應(yīng)用(一)與方程有關(guān)的問題例1.已知0a1,則方程a|x|logx|的a實根個數(shù)為()A.1個B.2個C.3個D.1個或2個或3個答案:B學(xué)生通過數(shù)學(xué)家的詩句感悟數(shù)形結(jié)合思想觀察,思考設(shè)計意圖:感悟數(shù)學(xué)思想和文化而是方程x2x=4的根,那么+=?二、數(shù)形結(jié)合思想的具體應(yīng)用設(shè)計意圖:例2.已知是方程xlogx4的根,常見問題的2處理答案:4(二)與方程有關(guān)的問題設(shè)計意圖:例3.不等式2xx2=kxk(其中k為常數(shù))通過變式訓(xùn)C.0,D.,C.0,D.,的解集不為空集,則k的取值范圍是多少?333A.,,B.0,31122

4、答案:B不變式訓(xùn)練:等式2xx2kxk(其中k為常數(shù))的解集不為空集,則k的取值范圍是多少?觀察,思考333A.,,B.0,31122答案:A(三)與函數(shù)有關(guān)的問題例4:函數(shù)yax與函數(shù)yxa的圖象恰有兩個公共點,則實數(shù)a的取值范圍是()練,找尋規(guī)律設(shè)計意圖:類似考題鞏固訓(xùn)練.設(shè)計意圖:對常見函數(shù)圖象加以深A(yù).(1,+)B.(1,1)化,進(jìn)行拓C.(,11,+)D.(,1)(1,+)答案:D展.求f()的若x,y滿足1,求y3x的最小值與最大值.學(xué)習(xí)必備歡迎下載(四)與解析幾何有關(guān)的問題例5.3sin32cos4最小值和最大值分別是多少?答案:最小值為0,最大值為2備用練習(xí)題:x2y21625答案:最小值為-13,最大值為13課堂小結(jié):找尋目標(biāo)函數(shù)的幾何含義三.課堂小結(jié)四思維提升五課后練習(xí)本節(jié)主要討論了利用數(shù)形結(jié)合思想來解決一些抽象數(shù)學(xué)問題的題型和方法:(一)與方程有關(guān)的問題(二)與不等式有關(guān)的問題(三)與函數(shù)有關(guān)的問題(四)與幾何有關(guān)的問題思維提升:數(shù)形結(jié)合的重點在于“以形助數(shù)”,通過“以形助數(shù)”使得復(fù)雜問題簡單化,抽象問題具體化,從而起到優(yōu)化解題途徑的目的。完成學(xué)案上剩余的針對訓(xùn)練學(xué)生討論,思考,進(jìn)一步鞏固處理數(shù)形結(jié)合思想的基本方法學(xué)習(xí)必備歡迎下載八、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論