數(shù)據(jù)通信基礎(chǔ):第3章 信號_第1頁
數(shù)據(jù)通信基礎(chǔ):第3章 信號_第2頁
數(shù)據(jù)通信基礎(chǔ):第3章 信號_第3頁
數(shù)據(jù)通信基礎(chǔ):第3章 信號_第4頁
數(shù)據(jù)通信基礎(chǔ):第3章 信號_第5頁
已閱讀5頁,還剩67頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、數(shù)據(jù)通信基礎(chǔ)第3章 (信號)20120305BitLiuJKPage 2 第3章內(nèi)容提要第3章 信號3.1 模擬與數(shù)字3.2 模擬信號3.3 數(shù)字信號3.4 模擬與數(shù)字的比較3.5 數(shù)據(jù)速率的極限3.6 傳輸損傷3.7 信號的其它特性20120305BitLiuJKPage 3 Physical LayerPART II第二部分包括本書的第3-9章第二部分 物理層20120305BitLiuJKPage 4 Position of the physical layer物理層的作用和位置Duties for Physical Layer20120305Page 5 BitLiuJK物理層的功能比

2、特到信號的轉(zhuǎn)換比特速率控制比特同步多路復(fù)用電路交換20120305BitLiuJKPage 6 Analog and Digital Data模擬與數(shù)字?jǐn)?shù)據(jù)Analog and Digital Signals模擬與數(shù)字信號Periodic and Aperiodic Signals周期與非周期信號3.1 Analog and Digital20120305BitLiuJKPage 7 To be transmitted, data must be transformed to electromagnetic signals.Notes:Signals can be analog or digi

3、tal. Analog signals can have an infinite number of values in a range; digital signals can have only a limited number of values.Figure 3.1 Comparison of analog and digital signals20120305Page 8 BitLiuJK注意:區(qū)分模擬與數(shù)字信號,只關(guān)心縱軸(即幅度);如果關(guān)心橫軸,得到的是連續(xù)與離散信號。20120305BitLiuJKPage 9 Periodic & AperiodicPeriodic sign

4、al refers to a signal which consists of a continuously repeating pattern (cycle).Period Cycle (周期)Example Sine waveAperiodic signal refers to a signal without a definite period.20120305BitLiuJKPage 10 In data communication, we commonly use periodic analog signals and aperiodic digital signals.Note:2

5、0120305BitLiuJKPage 11 3.2 Analog SignalsSine WavePhaseExamples of Sine WavesTime and Frequency DomainsComposite SignalsBandwidth20120305BitLiuJKPage 12 Three characteristics of a sine wave include: amplitude幅度 frequnecy頻率 phase相位。Note:Figure 3.3 Amplitude20120305Page 13 BitLiuJKFigure 3.4 Period an

6、d frequencyFrequency and period are inverses of each other. f = 1/T20120305Page 14 BitLiuJK20120305BitLiuJKPage 15 Table 3.1 Units of periods and frequenciesUnitEquivalentUnitEquivalentSeconds (s)1 shertz (Hz)1 Hzmilliseconds (ms)103 skilohertz (kHz)103 Hzmicroseconds (s)106 smegahertz (MHz)106 Hzna

7、noseconds (ns)109 sgigahertz (GHz)109 Hzpicoseconds (ps)1012 sterahertz (THz)1012 HzHertz?20120305BitLiuJKPage 16 More about UnitsPrefixSymbolFactorPrefixSymbolFactor十deka da101deci d 10-1分百hecto h102centi c 10-2厘千kilo k103milli m 10-3毫兆mega M106micro 10-6微吉giga G109nano n 10-9納太tera T1012pico p 10-

8、12皮peta P1015femto f 10-15飛exa E1018atto a 10-18zetta Z1021zepto z 10-21yottaY1024yocto y 10-24Example 1Express a period of 100 ms in microseconds, and express the corresponding frequency in kilohertz. 將100毫秒的周期表示成微妙,并將其對應(yīng)的頻率表示成千赫。SolutionFrom Table 3.1 we find the equivalent of 1 ms. We make the fo

9、llowing substitutions:100 ms = 100 10-3 s = 100 10-3 106 ms = 105 ms Now we use the inverse relationship to find the frequency, changing hertz to kilohertz100 ms = 100 10-3 s = 10-1 s f = 1/10-1 Hz = 10 Hz = 10-2 kHz20120305Page 17 BitLiuJK20120305BitLiuJKPage 18 Frequency is the rate of change with

10、 respect to time. Change in a short span of time means high frequency(高頻). Change over a long span of time means low frequency(低頻).Note:Another meaning of frequency20120305BitLiuJKPage 19 If a signal does not change at all, its frequency is zero (Direct Curret,DC直流). If a signal changes instantaneou

11、sly, its frequency is infinite.Note:Figure 3.5 Relationships between different phasesPhase describes the position of the waveform relative to time zero.20120305Page 20 BitLiuJK20120305BitLiuJKPage 21 Example 2A sine wave is offset one-sixth of a cycle with respect to time zero. What is its phase in

12、degrees and radians?SolutionWe know that one complete cycle is 360 degrees. Therefore, 1/6 cycle is (1/6) 360 = 60 degrees = 60 x 2p /360 rad = 1.046 rad Figure 3.6 Sine wave examples20120305Page 22 BitLiuJKFigure 3.6 Sine wave examples (continued)20120305Page 23 BitLiuJK20120305BitLiuJKPage 24 An a

13、nalog signal is best represented in the frequency domain頻域.Note:Figure 3.7 Time and frequency domains20120305Page 25 BitLiuJK20120305BitLiuJKPage 26 A single-frequency sine wave is not useful in data communications; we need to change one or more of its characteristics to make it useful. Notes:When w

14、e change one or more characteristics of a single-frequency signal, it becomes a composite signal made of many frequencies.20120305BitLiuJKPage 27 According to Fourier analysis, any composite signal can be represented as a combination of simple sine waves with different frequencies, phases, and ampli

15、tudes.Note:根據(jù)傅里葉分析,任何復(fù)合信號都可以表示成具有不同幅度、頻率和相位的簡單正弦波的組合疊加。Figure 3.9 Basic Square Wave20120305Page 28 BitLiuJKFigure 3.10 Adding first three harmonics20120305Page 29 BitLiuJKFigure 3.11 Frequency spectrum comparison20120305Page 30 BitLiuJKFigure 3.12 Signal distortion 信號失真20120305Page 31 BitLiuJK由于傳輸介質(zhì)

16、的有限帶寬導(dǎo)致的信號失真20120305BitLiuJKPage 32 The bandwidth帶寬 is a property of a medium: It is the difference between the highest and the lowest frequencies that the medium can satisfactorily pass. Note:We will use the term bandwidth to refer to the property of a medium OR the width of a single spectrum頻譜. Fi

17、gure 3.13 Bandwidth20120305Page 33 BitLiuJK20120305BitLiuJKPage 34 Example 3If a periodic signal is decomposed into five sine waves with frequencies of 100, 300, 500, 700, and 900 Hz, what is the bandwidth? Draw the spectrum, assuming all components have a maximum amplitude of 10 V.SolutionB = fh -f

18、l = 900 - 100 = 800 HzThe spectrum has only five spikes, at 100, 300, 500, 700, and 900 (see Figure 13.4 )Figure 3.14 Example 320120305Page 35 BitLiuJK20120305BitLiuJKPage 36 Example 4A signal has a bandwidth of 20 Hz. The highest frequency is 60 Hz. What is the lowest frequency? Draw the spectrum i

19、f the signal contains all integral frequencies of the same amplitude.SolutionB = fh - fl20 = 60 - flfl = 60 - 20 = 40 HzFigure 3.15 Example 420120305Page 37 BitLiuJK20120305BitLiuJKPage 38 Example 5A signal has a spectrum with frequencies between 1000 and 2000 Hz (bandwidth of 1000 Hz). A medium can

20、 pass frequencies from 3000 to 4000 Hz (a bandwidth of 1000 Hz). Can this signal faithfully pass through this medium? SolutionThe answer is definitely no. Although the signal can have the same bandwidth (1000 Hz), the range does not overlap. The medium can only pass the frequencies between 3000 and

21、4000 Hz; the signal is totally lost.20120305BitLiuJKPage 39 3.3 Digital SignalsBit Interval and Bit RateAs a Composite Analog SignalThrough Wide-Bandwidth MediumThrough Band-Limited MediumVersus Analog BandwidthHigher Bit RateFigure 3.16 A digital signal20120305Page 40 BitLiuJK20120305BitLiuJKPage 4

22、1 Example 6A digital signal has a bit rate of 2000 bps. What is the duration of each bit (bit interval)SolutionThe bit interval is the inverse of the bit rate.Bit interval = 1/ 2000 s = 0.000500 s = 0.000500 x 106 ms = 500 msFigure 3.17 Bit rate and bit interval20120305Page 42 BitLiuJKFigure 3.18 Di

23、gital versus analog20120305Page 43 BitLiuJK20120305BitLiuJKPage 44 Analogue frequency = bit rateOR, for a channel of bandwidth, BThe max. binary bit rate (or channel capacity, C) it can support is:C = 2 * BNote:20120305BitLiuJKPage 45 The bit rate and the bandwidth are proportional to each other.Not

24、e:Example: A telephone line has an audio bandwidth of 3kHz its maximum binary bit rate is thus 6kbps20120305BitLiuJKPage 46 3.4 Analog versus DigitalLow-pass versus Band-passDigital TransmissionAnalog TransmissionFigure 3.19 Low-pass and band-pass 低通與帶通20120305Page 47 BitLiuJK20120305BitLiuJKPage 48

25、 The analog bandwidth of a medium is expressed in hertz; the digital bandwidth, in bits per second.Note:20120305BitLiuJKPage 49 Digital transmission needs a low-pass channel.Notes:Analog transmission can use a band-pass channel.20120305BitLiuJKPage 50 3.5 Data Rate LimitNoiseless Channel: Nyquist Bi

26、t Rate無噪信道:奈奎斯特比特速率Noisy Channel: Shannon Capacity有噪信道:香農(nóng)容量20120305BitLiuJKPage 51 Example 7Consider a noiseless channel with a bandwidth, B, of 3000 Hz transmitting a signal with two (binary) signal levels. The maximum bit rate can be calculated using the Nyquist bit rateNyquist Bit rate = 2 x B x

27、log2 Lwhere L is the number of signal levelsBit Rate = 2 3000 log2 2 = 6000 bpsIf we wish to squeeze more data down this channel, we have to transmit more than one bit at a given instant by having more than 2 signal levels20120305BitLiuJKPage 52 Example 8Consider the same noiseless channel, transmit

28、ting a signal with four signal levels (for each level, we can now send two bits). The maximum bit rate can be calculated as: Bit Rate = 2 x 3000 x log2 4 = 12,000 bps0V3V2V1V01111000By having 4 signal levels (L=4), we can now send 2 bits at a time20120305BitLiuJKPage 53 A real channel will have its

29、capacity limited by noise, which will limit the number of voltage levels which can be reliably distinguished.Shannon Capacity Formula:A noisy communications channel with bandwidth, B, has a maximum capacity, C, of:C = B x log2 (1 + SNR) bits/secWhere SNR is the signal to noise ratio, calculated as:

30、SNR = signal power/noise power20120305BitLiuJKPage 54 Example 9Consider an extremely noisy channel in which the value of the signal-to-noise ratio (SNR) is almost zero. In other words, the noise is so strong that the signal is faint. For this channel the capacity is calculated asC = B log2 (1 + SNR)

31、 = B log2 (1 + 0) = B log2 (1) = B 0 = 020120305BitLiuJKPage 55 Example 10We can calculate the theoretical highest bit rate of a regular telephone line. A telephone line normally has a bandwidth of 3000 Hz (300 Hz to 3300 Hz). The signal-to-noise ratio is usually around 3162 (35dB). For this channel

32、 the capacity is calculated asC = B log2 (1 + SNR) = 3000 log2 (1 + 3162) = 3000 log2 (3163)C = 3000 11.62 = 34,860 bpsExample 11We have a channel with a 1 MHz bandwidth. The SNR for this channel is 63; what is the appropriate bit rate and signal level?SolutionC = B log2 (1 + SNR) = 106 log2 (1 + 63

33、) = 106 log2 (64) = 6 MbpsThen we use the Nyquist formula to find the optimumnumber of signal levels. We reduce the required capacity to 4Mbps ( max of 6Mbps) to ensure good performance.4 Mbps = 2 1 MHz log2 L L = 4First, we use the Shannon formula to find our upper limit.20120305Page 56 BitLiuJK201

34、20305BitLiuJKPage 57 3.6 Transmission Impairment傳輸損傷Attenuation衰減Distortion失真Noise噪聲Figure 3.20 Impairment typesTransmission Impairment20120305Page 58 BitLiuJKFigure 3.21 Attenuation20120305Page 59 BitLiuJK20120305BitLiuJKPage 60 Example 12Imagine a signal travels through a transmission medium and i

35、ts power is reduced to half. This means that P2 = 1/2 P1. In this case, the attenuation (loss of power) can be calculated asSolution 10 log10 (P2/P1) = 10 log10 (0.5P1/P1) = 10 log10 (0.5) = 10(0.3) = 3 dB20120305BitLiuJKPage 61 Example 13Imagine a signal travels through an amplifier and its power i

36、s increased ten times. This means that P2 = 10 x P1. In this case, the amplification (gain of power) can be calculated as 10 log10 (P2/P1) = 10 log10 (10P1/P1) = 10 log10 (10) = 10 (1) = 10 dB20120305BitLiuJKPage 62 Example 14One reason that engineers use the decibel to measure the changes in the strength of a signal is that decibel numbers can be added (or subtracted) when we are talking about several points instead of just two (cascading). In Figure 3.22 a signal travels a long dis

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論