2021-2022學(xué)年天津市軍糧城高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第1頁
2021-2022學(xué)年天津市軍糧城高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第2頁
2021-2022學(xué)年天津市軍糧城高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第3頁
2021-2022學(xué)年天津市軍糧城高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第4頁
2021-2022學(xué)年天津市軍糧城高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請按要求用筆。3請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并

2、且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米.所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為( )A米B米C米D米2秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的數(shù)書九章中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入的值為2,則輸出的值為ABCD3若函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為( )ABC

3、D4連接雙曲線及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為( )ABCD5中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、為頂點(diǎn)的多邊形為正五邊形,且,則( )ABCD6已知非零向量滿足,且與的夾角為,則( )A6BCD37已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),當(dāng)周長最小時(shí),所在直線的斜率為( )ABCD8如圖,平面四邊形中,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為( )ABCD9為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計(jì)學(xué)家勞倫茨提出了著名的勞倫茨曲線,如

4、圖所示.勞倫茨曲線為直線時(shí),表示收入完全平等.勞倫茨曲線為折線時(shí),表示收入完全不平等.記區(qū)域?yàn)椴黄降葏^(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:越小,則國民分配越公平;設(shè)勞倫茨曲線對應(yīng)的函數(shù)為,則對,均有;若某國家某年的勞倫茨曲線近似為,則;若某國家某年的勞倫茨曲線近似為,則.其中正確的是:ABCD10已知,則 ()ABCD11音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基

5、本音頻率的整數(shù)倍,稱為基本音的諧波下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是( )ABCD12已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限二、填空題:本題共4小題,每小題5分,共20分。13已知實(shí)數(shù),對任意,有,且,則_.14在的二項(xiàng)展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)展開式中的常數(shù)項(xiàng)等于_.15已知一個(gè)圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為_16雙曲線的焦點(diǎn)坐標(biāo)是_,漸近線方程是_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極

6、點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長18(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程(為參數(shù)),若直線的交點(diǎn)為,當(dāng)變化時(shí),點(diǎn)的軌跡是曲線(1)求曲線的普通方程;(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,設(shè)射線的極坐標(biāo)方程為,點(diǎn)為射線與曲線的交點(diǎn),求點(diǎn)的極徑.19(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.20(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直

7、線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C()求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;()設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值21(12分)已知,函數(shù)(1)若,求的單調(diào)遞增區(qū)間;(2)若,求的值22(10分)設(shè)函數(shù),()討論的單調(diào)性;()時(shí),若,求證:參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以 .故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬

8、于中檔題.2C【解析】由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的,的值,當(dāng)時(shí),不滿足條件,跳出循環(huán),輸出的值【詳解】解:初始值,程序運(yùn)行過程如下表所示:,跳出循環(huán),輸出的值為其中得故選:【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題3C【解析】由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,求出的最大值【詳解】解:把函數(shù)的圖象向右平移個(gè)單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調(diào)遞增,在區(qū)間,上,則當(dāng)最大時(shí),求得,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題4D【解析】先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四

9、個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識(shí)點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.5A【解析】利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及

10、運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題6D【解析】利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結(jié)果即可【詳解】解:非零向量,滿足,可知兩個(gè)向量垂直,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則故選:【點(diǎn)睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題7A【解析】本道題繪圖發(fā)現(xiàn)三角形周長最小時(shí)A,P位于同一水平線上,計(jì)算點(diǎn)P的坐標(biāo),計(jì)算斜率,即可【詳解】結(jié)合題意,繪制圖像要計(jì)算三角形PAF周長最小值,即計(jì)算PA+PF最小值,結(jié)合拋物線性質(zhì)可知,PF=PN,所以,故當(dāng)點(diǎn)P運(yùn)動(dòng)到M點(diǎn)處

11、,三角形周長最小,故此時(shí)M的坐標(biāo)為,所以斜率為,故選A【點(diǎn)睛】本道題考查了拋物線的基本性質(zhì),難度中等8A【解析】將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,可知平面將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.9A【解析】對于,根據(jù)基尼系數(shù)公式,可得基

12、尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以正確.對于,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以錯(cuò)誤.對于,因?yàn)?,所以,所以錯(cuò)誤.對于,因?yàn)椋?,所以正確.故選A10B【解析】利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力11C【解析】由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.12B【解析】求出復(fù)數(shù),得

13、出其對應(yīng)點(diǎn)的坐標(biāo),確定所在象限【詳解】由題意,對應(yīng)點(diǎn)坐標(biāo)為 ,在第二象限故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13-1【解析】由二項(xiàng)式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解【詳解】由,且,則,又,所以,令得:,所以,故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識(shí)的理解掌握水平141【解析】由題意可得,再利用二項(xiàng)展開式的通項(xiàng)公式,求得二項(xiàng)展開式常數(shù)項(xiàng)的值【詳解】的二項(xiàng)展開式的中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,通項(xiàng)公式為,令,求得,可得二項(xiàng)展開式常數(shù)項(xiàng)等于,故答案為1【點(diǎn)

14、睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題15【解析】依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長為,高為,所以有 解得, 故該圓錐的體積為。【點(diǎn)睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。16 【解析】通過雙曲線的標(biāo)準(zhǔn)方程,求解,即可得到所求的結(jié)果【詳解】由雙曲線,可得,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:故答案為:;【點(diǎn)睛】本題主要考查了雙曲線的簡單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題三、解答題:共70分。解答應(yīng)寫出文字說明、證明

15、過程或演算步驟。17(1),;(2) .【解析】(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程; (2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:轉(zhuǎn)換為極坐標(biāo)方程為:,即曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:, 化為一般式得化為極坐標(biāo)方程為: (2)由于,得,所以,所以,由于,所以,所以【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于??碱}型.18(1);(2)【解析】(1)將兩直線化為普通方程,消去參數(shù),即可求出曲線的普通方程;

16、(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,求出,代入曲線C可求解.【詳解】(1)直線的普通方程為,直線的普通方程為聯(lián)立直線,方程消去參數(shù)k,得曲線C的普通方程為整理得.(2)設(shè)Q點(diǎn)的直角坐標(biāo)系坐標(biāo)為,由可得代入曲線C的方程可得,解得(舍),所以點(diǎn)的極徑為.【點(diǎn)睛】本題主要考查了直線的參數(shù)方程化為普通方程,普通方程化為極坐標(biāo)方程,極徑的求法,屬于中檔題.19(1)(2)【解析】(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得, 再由平方關(guān)系得再求解.(2)由,得,結(jié)合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因?yàn)?,則,因?yàn)?,故,故,解得,故,則.【點(diǎn)睛】本題考查正弦定理、余弦定理、

17、三角形的面積公式,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.20()(t為參數(shù)),;()1.【解析】()直接由已知寫出直線l1的參數(shù)方程,設(shè)N(,),M(1,1),(0,10),由題意可得,即4cos,然后化為普通方程;()將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP|AQ|的值【詳解】()直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù))設(shè)N(,),M(1,1),(0,10),則,即,即=4cos,曲線C的直角坐標(biāo)方程為x2-4x+y2=0(x0).()將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得,即,t1,t2為方程的兩個(gè)根,t1t2=

18、-1,|AP|AQ|=|t1t2|=|-1|=1【點(diǎn)睛】本題考查簡單曲線的極坐標(biāo)方程,考查直角坐標(biāo)方程與直角坐標(biāo)方程的互化,訓(xùn)練了直線參數(shù)方程中參數(shù)t的幾何意義的應(yīng)用,是中檔題21(1);(2).【解析】(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可得出函數(shù)的單調(diào)遞增區(qū)間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當(dāng)時(shí),由,得,因此,函數(shù)的單調(diào)遞增區(qū)間為;(2),【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵,屬中等題22(1)證明見解析;(2)證明見解析.【解析】(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論