36直線和圓的位置關(guān)系(第1課時)演示文稿 (2)_第1頁
36直線和圓的位置關(guān)系(第1課時)演示文稿 (2)_第2頁
36直線和圓的位置關(guān)系(第1課時)演示文稿 (2)_第3頁
36直線和圓的位置關(guān)系(第1課時)演示文稿 (2)_第4頁
36直線和圓的位置關(guān)系(第1課時)演示文稿 (2)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第三章 圓3.6 直線和圓的位置關(guān)系(第1課時)點和圓的位置關(guān)系有幾種?(3)dr 點在圓外復(fù)習(xí)(2)d=r 點在圓上 (1)dr 點在圓內(nèi) 直線與圓的位置關(guān)系 觀察三幅太陽落山的照片,地平線與太陽的位置關(guān)系是怎樣的?你發(fā)現(xiàn)這個自然現(xiàn)象反映出直線和圓的位置關(guān)系有哪幾種?a(地平線)直線與圓的位置關(guān)系 觀察三幅太陽落山的照片,地平線與太陽的位置關(guān)系是怎樣的?你發(fā)現(xiàn)這個自然現(xiàn)象反映出直線和圓的位置關(guān)系有哪幾種?a(地平線)a(地平線)OOO直線與圓的位置關(guān)系 作一個圓,把直尺邊緣看成一條直線. 固定圓,平移直尺,直線和圓有哪幾種位置關(guān)系?OO相交相交直線和圓有惟一公共點(即直線和圓相切)時,這條直

2、線叫做圓的切線,這個惟一的公共點叫做切點.O相切相切相離相離 如圖,圓心O到直線l的距離d與O的半徑r的大小有什么關(guān)系? 你能根據(jù)d與r的大小關(guān)系確定直線與圓的位置關(guān)系嗎?OO相交相交O相切相切相離相離直線與圓的位置關(guān)系量化揭密rrrddd直線和圓相交 d d r;r; d d r;r;直線和圓相切直線和圓相離 d d r r; ;直線與圓的位置關(guān)系量化揭密OO相交相交O相切相切相離相離rrrddd總結(jié)判定直線與圓的位置關(guān)系的方法有_種:(1)根據(jù)定義,由直線與圓的公共點的個數(shù)來判斷; (2)根據(jù)性質(zhì),由圓心到直線的距離d與半徑r 的關(guān)系來判斷。兩兩1、已知圓的直徑為13cm,設(shè)直線和圓心的距

3、離為d :3)若d= 8 cm ,則直線與圓_, 直線與圓有_個公共點. 2)若d=6.5cm ,則直線與圓_, 直線與圓有_個公共點. 1)若d=4.5cm ,則直線與圓, 直線與圓有_個公共點. 相交相切相離210圓的切線性質(zhì)定理 圓的切線垂直圓的切線垂直于過切點的半于過切點的半徑徑O切線的性質(zhì)定理的應(yīng)用2、已知RtABC的斜邊AB=8cm,直角邊AC=4cm.(1)以點C為圓心作圓,當(dāng)半徑為多長時,AB與C相切?ACBD(2)以點C為圓心,分別以2cm,4cm為半徑作兩個圓,這兩個圓與AB分別有怎樣的位置關(guān)系?駛向勝利的彼岸切線的性質(zhì)的應(yīng)用當(dāng)r=4cm時,dr,AB與C相離;解:(2)由

4、(1)可知,圓心到AB的距離d= cm,所以323、如圖,已知AOB= 30,M為OB上一點,且OM=5cm,若以M為圓心,r為半徑作圓,那么:1)當(dāng)直線0A與 M相離時, r的取值范圍是2)當(dāng)直線OA與 M相切時, r的取值范圍是3)當(dāng)直線OA與 M有公共點時, r的取值范圍是CO(1)0cm r 2.5cm(2)r = 2.5cm(3)r2.5cm3030MBA5探索切線性質(zhì)1.你能舉出生活中直線與圓相交,相切,相離的實例嗎?2.上面的三個圖形是軸對稱圖形嗎?如果是,你能畫出它們的對稱軸嗎?由此你能悟出點什么?OO相交相交O相切相切相離相離探索切線性質(zhì) 如圖,直線CD與O相切于點A,直徑A

5、B與直線CD有怎樣的位置關(guān)系?說說你的理由.直徑AB垂直于直線CD.小穎的理由是:右圖是軸對稱圖形,AB是對稱軸,沿直線AB對折圖形時,AC與AD重合,因此,BAC=BAD=90.CDBOA探索切線性質(zhì) 小亮的理由是:直徑AB與直線CD要么垂直,要么不垂直. 假設(shè)AB與CD不垂直,過點O作一條直徑垂直于CD,垂足為M, 則OMOA,即圓心到直線CD的距離小于O的半徑,因此,CD與O相交.這與已知條件“直線與O相切”相矛盾.CDBOA所以AB與CD垂直.M切線的性質(zhì)定理: 圓的切線垂直于過切點的半徑.如圖CD是O的切線,A是切點,OA是O的半徑,CDOA.CDBOA老師提示:切線的性質(zhì)定理是證明

6、兩線垂直的重要根據(jù);作過切點的半徑是常用經(jīng)驗輔助線之一.切線的性質(zhì)的應(yīng)用1.直線BC與半徑為r的O相交,且點O到直線BC的距離為5,求r的取值范圍.2.一枚直徑為d的硬幣沿直線滾動一圈.圓心經(jīng)過的距離是多少?.老師提示:硬幣滾動一圈,圓心經(jīng)過的路經(jīng)是與直線平行的一條線段,其長度等于圓的周長.rBCO 3、已知:如圖,P是O外一點,PA,PB都是O的切線,A,B是切點.請你觀察猜想,PA,PB有怎樣的關(guān)系?并證明你的結(jié)論.ABPO4、如圖,點A是一個半徑為300m的圓形森林公園的中心,在森林公園附近有B,C兩村莊,現(xiàn)要在B,C兩村莊之間修一條長為1000m的筆直公路將兩村連通, 現(xiàn)測得ABC=45, ACB= 30問此公路是否會穿過該森林公園?請通過計算進(jìn)行說明D4530AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論