高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析_第1頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析_第2頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析_第3頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析_第4頁(yè)
高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、文檔供參考,可復(fù)制、編制,期待您的好評(píng)與關(guān)注! 高中數(shù)學(xué)重點(diǎn)知識(shí)與結(jié)論分類解析一、集合與簡(jiǎn)易邏輯1集合的元素具有確定性、無(wú)序性和互異性2對(duì)集合 , 時(shí),必須注意到“極端”情況: 或 ;求集合的子集時(shí)是否注意到 是任何集合的子集、 是任何非空集合的真子集3對(duì)于含有 個(gè)元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個(gè)數(shù)依次為     4“交的補(bǔ)等于補(bǔ)的并,即 ”;“并的補(bǔ)等于補(bǔ)的交,即 ”5判斷命題的真假   關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不或即且,不且即或”6“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”

2、的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”7四種命題中“逆者交換也”、“否者否定也”原命題等價(jià)于逆否命題,但原命題與逆命題、否命題都不等價(jià)反證法分為三步:假設(shè)、推矛、得果注意:命題的否定是“命題的非命題,也就是條件不變,僅否定結(jié)論所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” L8充要條件二、函 數(shù)1指數(shù)式、對(duì)數(shù)式,2(1)映射是“全部射出加一箭一雕”;映射中第一個(gè)集合 中的元素必有像,但第二個(gè)集合 中的元素不一定有原像( 中元素的像有且僅有下一個(gè),但 中元素的原像可能沒(méi)有,也可任意個(gè));函數(shù)是“非空數(shù)集上的映射”,其中“

3、值域是映射中像集 的子集”(2)函數(shù)圖像與 軸垂線至多一個(gè)公共點(diǎn),但與 軸垂線的公共點(diǎn)可能沒(méi)有,也可任意個(gè)(3)函數(shù)圖像一定是坐標(biāo)系中的曲線,但坐標(biāo)系中的曲線不一定能成為函數(shù)圖像3單調(diào)性和奇偶性(1)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等對(duì)于偶函數(shù)而言有: (2)若奇函數(shù)定義域中有0,則必有 即 的定義域時(shí), 是 為奇函數(shù)的必要非充分條件(3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、

4、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等(4)既奇又偶函數(shù)有無(wú)窮多個(gè)( ,定義域是關(guān)于原點(diǎn)對(duì)稱的任意一個(gè)數(shù)集)(7)復(fù)合函數(shù)的單調(diào)性特點(diǎn)是:“同性得增,增必同性;異性得減,減必異性”復(fù)合函數(shù)的奇偶性特點(diǎn)是:“內(nèi)偶則偶,內(nèi)奇同外”復(fù)合函數(shù)要考慮定義域的變化。(即復(fù)合有意義)4對(duì)稱性與周期性(以下結(jié)論要消化吸收,不可強(qiáng)記)(1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱推廣一:如果函數(shù) 對(duì)于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對(duì)稱推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對(duì)稱(2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對(duì)稱(3)函

5、數(shù) 與函數(shù) 的圖像關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱推廣:曲線 關(guān)于直線 的對(duì)稱曲線是 ;曲線 關(guān)于直線 的對(duì)稱曲線是 (5)類比“三角函數(shù)圖像”得:若 圖像有兩條對(duì)稱軸 ,則 必是周期函數(shù),且一周期為 如果 是R上的周期函數(shù),且一個(gè)周期為 ,那么 特別:若 恒成立,則 若 恒成立,則 若 恒成立,則 三、數(shù)  列1數(shù)列的通項(xiàng)、數(shù)列項(xiàng)的項(xiàng)數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項(xiàng)與數(shù)列的前 項(xiàng)和公式的關(guān)系: (必要時(shí)請(qǐng)分類討論)注意: ; 2等差數(shù)列 中:(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性(2)  ; (3) 、 也成等差數(shù)列(4)兩等差數(shù)列對(duì)應(yīng)項(xiàng)和(差)組成的新數(shù)列仍成等差數(shù)列(5)

6、仍成等差數(shù)列(8)“首正”的遞等差數(shù)列中,前 項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前 項(xiàng)和的最小值是所有非正項(xiàng)之和;(9)有限等差數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然了解,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”“奇數(shù)項(xiàng)和”總項(xiàng)數(shù)的一半與其公差的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”“偶數(shù)項(xiàng)和”此數(shù)列的中項(xiàng)(10)兩數(shù)的等差中項(xiàng)惟一存在在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解(11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項(xiàng)法、通項(xiàng)法、和式法、圖像法(也就是說(shuō)數(shù)列是等差數(shù)列的充要條件主要有這五種形式)3等比數(shù)列 中:(1)等比數(shù)列

7、的符號(hào)特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項(xiàng)、公比與等比數(shù)列的單調(diào)性(3) 、 、 成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列(4)兩等比數(shù)列對(duì)應(yīng)項(xiàng)積(商)組成的新數(shù)列仍成等比數(shù)列(8)“首大于1”的正值遞減等比數(shù)列中,前 項(xiàng)積的最大值是所有大于或等于1的項(xiàng)的積;“首小于1”的正值遞增等比數(shù)列中,前 項(xiàng)積的最小值是所有小于或等于1的項(xiàng)的積;(9)有限等比數(shù)列中,奇數(shù)項(xiàng)和與偶數(shù)項(xiàng)和的存在必然了解,由數(shù)列的總項(xiàng)數(shù)是偶數(shù)還是奇數(shù)決定若總項(xiàng)數(shù)為偶數(shù),則“偶數(shù)項(xiàng)和”“奇數(shù)項(xiàng)和”與“公比”的積;若總項(xiàng)數(shù)為奇數(shù),則“奇數(shù)項(xiàng)和”“首項(xiàng)”加上“公比”與“偶數(shù)項(xiàng)和”積的和(10)并非任何兩數(shù)總有等比中項(xiàng)僅當(dāng)實(shí)數(shù)

8、同號(hào)時(shí),實(shí)數(shù) 存在等比中項(xiàng)對(duì)同號(hào)兩實(shí)數(shù) 的等比中項(xiàng)不僅存在,而且有一對(duì) 也就是說(shuō),兩實(shí)數(shù)要么沒(méi)有等比中項(xiàng)(非同號(hào)時(shí)),如果有,必有一對(duì)(同號(hào)時(shí))在遇到三數(shù)或四數(shù)成等差數(shù)列時(shí),常優(yōu)先考慮選用“中項(xiàng)關(guān)系”轉(zhuǎn)化求解(11)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項(xiàng)法、通項(xiàng)法、和式法(也就是說(shuō)數(shù)列是等比數(shù)列的充要條件主要有這四種形式)4等差數(shù)列與等比數(shù)列的了解(1)如果數(shù)列 成等差數(shù)列,那么數(shù)列 ( 總有意義)必成等比數(shù)列(2)如果數(shù)列 成等比數(shù)列,那么數(shù)列 必成等差數(shù)列(3)如果數(shù)列 既成等差數(shù)列又成等比數(shù)列,那么數(shù)列 是非零常數(shù)數(shù)列;但數(shù)列 是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非

9、充分條件(4)如果兩等差數(shù)列有公共項(xiàng),那么由他們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)如果一個(gè)等差數(shù)列與一個(gè)等比數(shù)列有公共項(xiàng)順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項(xiàng)為主,探求等比數(shù)列中那些項(xiàng)是他們的公共項(xiàng),并構(gòu)成新的數(shù)列注意:(1)公共項(xiàng)僅是公共的項(xiàng),其項(xiàng)數(shù)不一定相同,即研究 但也有少數(shù)問(wèn)題中研究 ,這時(shí)既要求項(xiàng)相同,也要求項(xiàng)數(shù)相同(2)三(四)個(gè)數(shù)成等差(比)的中項(xiàng)轉(zhuǎn)化和通項(xiàng)轉(zhuǎn)化法5數(shù)列求和的常用方法:(1)公式法:等差數(shù)列求和公式(三種形式),等比數(shù)列求和公式(三種形式),(2)分組求和法:在直接運(yùn)用公式法

10、求和有困難時(shí),常將“和式”中“同類項(xiàng)”先合并在一起,再運(yùn)用公式法求和(3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項(xiàng)和有其共性或數(shù)列的通項(xiàng)與組合數(shù)相關(guān)聯(lián),則常可考慮選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前 和公式的推導(dǎo)方法)(4)錯(cuò)位相減法:如果數(shù)列的通項(xiàng)是由一個(gè)等差數(shù)列的通項(xiàng)與一個(gè)等比數(shù)列的通項(xiàng)相乘構(gòu)成,那么常選用錯(cuò)位相減法,將其和轉(zhuǎn)化為“一個(gè)新的的等比數(shù)列的和”求解(注意:一般錯(cuò)位相減后,其中“新等比數(shù)列的項(xiàng)數(shù)是原數(shù)列的項(xiàng)數(shù)減一的差”?。ㄟ@也是等比數(shù)列前 和公式的推導(dǎo)方法之一)(5)裂項(xiàng)相消法:如果數(shù)列的通項(xiàng)可“分裂成兩項(xiàng)差”的形式,且相鄰項(xiàng)分裂后相關(guān)聯(lián),那么常

11、選用裂項(xiàng)相消法求和常用裂項(xiàng)形式有:特別聲明:L運(yùn)用等比數(shù)列求和公式,務(wù)必檢查其公比與1的關(guān)系,必要時(shí)分類討論(6)通項(xiàng)轉(zhuǎn)換法。四、三角函數(shù)1 終邊與 終邊相同( 的終邊在 終邊所在射線上)  終邊與 終邊共線( 的終邊在 終邊所在直線上) 終邊與 終邊關(guān)于 軸對(duì)稱  終邊與 終邊關(guān)于 軸對(duì)稱  終邊與 終邊關(guān)于原點(diǎn)對(duì)稱  一般地: 終邊與 終邊關(guān)于角 的終邊對(duì)稱  與 的終邊關(guān)系由“兩等分各象限、一二三四”確定2弧長(zhǎng)公式: ,扇形面積公式: ,1弧度(1rad) 3三角函數(shù)符號(hào)特征是:一是全正、二正弦正、三是切正、四余弦正注意: ,4三角函數(shù)線

12、的特征是:正弦線“站在 軸上(起點(diǎn)在 軸上)”、余弦線“躺在 軸上(起點(diǎn)是原點(diǎn))”、正切線“站在點(diǎn) 處(起點(diǎn)是 )”務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,正弦 縱坐標(biāo)、余弦 橫坐標(biāo)、正切 縱坐標(biāo)除以橫坐標(biāo)之商”;務(wù)必記?。?jiǎn)挝粓A中角終邊的變化與 值的大小變化的關(guān)系 為銳角  5三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號(hào)”;6三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號(hào)看象限7三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”! 角的變換主要有:已知角與特殊角的

13、變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換常值變換主要指“1”的變換:等三角式變換主要有:三角函數(shù)名互化(切割化弦)、三角函數(shù)次數(shù)的降升(降次、升次)、運(yùn)算結(jié)構(gòu)的轉(zhuǎn)化(和式與積式的互化)解題時(shí)本著“三看”的基本原則來(lái)進(jìn)行:“看角、看函數(shù)、看特征”,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次注意:和(差)角的函數(shù)結(jié)構(gòu)與符號(hào)特征;余弦倍角公式的三種形式選用;降次(升次)公式中的符號(hào)特征“正余弦三兄妹 的了解”(常和三角換元法了解在一起         

14、0;  )輔助角公式中輔助角的確定: (其中 角所在的象限由a, b的符號(hào)確定, 角的值由 確定)在求最值、化簡(jiǎn)時(shí)起著重要作用尤其是兩者系數(shù)絕對(duì)值之比為 的情形 有實(shí)數(shù)解 8三角函數(shù)性質(zhì)、圖像及其變換:(1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性注意:正切函數(shù)、余切函數(shù)的定義域;絕對(duì)值對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變;其他不定如 的周期都是 , 但  的周期為 , y=|tanx|的周期不變,問(wèn)函數(shù)y=cos|x|,  ,y=cos

15、|x|是周期函數(shù)嗎?(2)三角函數(shù)圖像及其幾何性質(zhì):(3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換(4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法9三角形中的三角函數(shù):(1)內(nèi)角和定理:三角形三角和為 ,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余銳角三角形 三內(nèi)角都是銳角 三內(nèi)角的余弦值為正值 任兩角和都是鈍角 任意兩邊的平方和大于第三邊的平方(2)正弦定理: (R為三角形外接圓的半徑)注意:已知三角形兩邊一對(duì)角,求解三角形時(shí),若運(yùn)用正弦定理,則務(wù)必注意可能有兩解(3)余弦定理: 等,常選用余弦定理鑒定三角形的類型(4)面積公

16、式: 五、向  量1向量運(yùn)算的幾何形式和坐標(biāo)形式,請(qǐng)注意:向量運(yùn)算中向量起點(diǎn)、終點(diǎn)及其坐標(biāo)的特征2幾個(gè)概念:零向量、單位向量(與 共線的單位向量是 ,特別: )、平行(共線)向量(無(wú)傳遞性,是因?yàn)橛?)、相等向量(有傳遞性)、相反向量、向量垂直、以及一個(gè)向量在另一向量方向上的投影( 在 上的投影是 )3兩非零向量平行(共線)的充要條件     兩個(gè)非零向量垂直的充要條件        特別:零向量和任何向量共線 是向量平行的充分不必要條件!4平面向量的基本定理:如果e1和e2是同一平面

17、內(nèi)的兩個(gè)不共線向量,那么對(duì)該平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù) 、 ,使a= e1 e25三點(diǎn) 共線  共線;向量 中三終點(diǎn) 共線 存在實(shí)數(shù) 使得: 且 6向量的數(shù)量積: , ,注意: 為銳角  且 不同向;為直角  且 ;為鈍角  且 不反向;是 為鈍角的必要非充分條件向量運(yùn)算和實(shí)數(shù)運(yùn)算有類似的地方也有區(qū)別:一個(gè)封閉圖形首尾連接而成的向量和為零向量,這是題目中的天然條件,要注意運(yùn)用;對(duì)于一個(gè)向量等式,可以移項(xiàng),兩邊平方、兩邊同乘以一個(gè)實(shí)數(shù),兩邊同時(shí)取模,兩邊同乘以一個(gè)向量,但不能兩邊同除以一個(gè)向量,即兩邊不能約去一個(gè)向量;向量的“乘法”不滿足結(jié)合律,

18、即 ,切記兩向量不能相除(相約)7 注意: 同向或有     ;反向或有     ;不共線  (這些和實(shí)數(shù)集中類似)8.中點(diǎn)坐標(biāo)公式 ,  為 的中點(diǎn)中, 過(guò) 邊中點(diǎn); ;   為 的重心;特別 為 的重心為 的垂心;所在直線過(guò) 的內(nèi)心(是 的角平分線所在直線);  的內(nèi)心六、不等式1(1)解不等式是求不等式的解集,最后務(wù)必有集合的形式表示;不等式解集的端點(diǎn)值往往是不等式對(duì)應(yīng)方程的根或不等式有意義范圍的端點(diǎn)值(2)解分式不等式 的一般解題思路是什么?(移項(xiàng)

19、通分,分子分母分解因式,x的系數(shù)變?yōu)檎?,?biāo)根及奇穿過(guò)偶彈回);(3)含有兩個(gè)絕對(duì)值的不等式如何去絕對(duì)值?(一般是根據(jù)定義分類討論、平方轉(zhuǎn)化或換元轉(zhuǎn)化);(4)解含參不等式常分類等價(jià)轉(zhuǎn)化,必要時(shí)需分類討論注意:按參數(shù)討論,最后按參數(shù)取值分別說(shuō)明其解集,但若按未知數(shù)討論,最后應(yīng)求并集2利用重要不等式  以及變式 等求函數(shù)的最值時(shí),務(wù)必注意a,b (或a ,b非負(fù)),且“等號(hào)成立”時(shí)的條件是積ab或和ab其中之一應(yīng)是定值(一正二定三等四同時(shí))3常用不等式有: (根據(jù)目標(biāo)不等式左右的運(yùn)算結(jié)構(gòu)選用)a、b、c R, (當(dāng)且僅當(dāng) 時(shí),取等號(hào))4比較大小的方法和證明不等式的方法主要有:差比較法、

20、商比較法、函數(shù)性質(zhì)法、綜合法、分析法5含絕對(duì)值不等式的性質(zhì):同號(hào)或有     ;異號(hào)或有     注意:不等式恒成立問(wèn)題的常規(guī)處理方式?(常應(yīng)用方程函數(shù)思想和“分離變量法”轉(zhuǎn)化為最值問(wèn)題)6不等式的恒成立,能成立,恰成立等問(wèn)題(1)恒成立問(wèn)題若不等式 在區(qū)間 上恒成立,則等價(jià)于在區(qū)間 上 若不等式 在區(qū)間 上恒成立,則等價(jià)于在區(qū)間 上 (2)能成立問(wèn)題若在區(qū)間 上存在實(shí)數(shù) 使不等式 成立,即 在區(qū)間 上能成立, ,則等價(jià)于在區(qū)間 上 若在區(qū)間 上存在實(shí)數(shù) 使不等式 成立,即 在區(qū)間 上

21、能成立, ,則等價(jià)于在區(qū)間 上的 (3)恰成立問(wèn)題若不等式 在區(qū)間 上恰成立, 則等價(jià)于不等式 的解集為 若不等式 在區(qū)間 上恰成立, 則等價(jià)于不等式 的解集為 ,七、直線和圓1直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義( 或 )及其直線方程的向量式( ( 為直線的方向向量)應(yīng)用直線方程的點(diǎn)斜式、斜截式設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,但你是否注意到直線垂直于x軸時(shí),即斜率k不存在的情況?2知直線縱截距 ,常設(shè)其方程為 或 ;知直線橫截距 ,常設(shè)其方程為 (直線斜率k存在時(shí), 為k的倒數(shù))或 知直線過(guò)點(diǎn) ,常設(shè)其方程為 或 注意:(1)直線方程的幾種形式:點(diǎn)斜式、斜截式、兩點(diǎn)

22、式、截矩式、一般式、向量式以及各種形式的局限性(如點(diǎn)斜式不適用于斜率不存在的直線,還有截矩式呢?)與直線 平行的直線可表示為 ;與直線 垂直的直線可表示為 ;過(guò)點(diǎn) 與直線 平行的直線可表示為:;過(guò)點(diǎn) 與直線 垂直的直線可表示為:(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0直線兩截距相等 直線的斜率為-1或直線過(guò)原點(diǎn);直線兩截距互為相反數(shù) 直線的斜率為1或直線過(guò)原點(diǎn);直線兩截距絕對(duì)值相等 直線的斜率為 或直線過(guò)原點(diǎn)(3)在解析幾何中,研究?jī)蓷l直線的位置關(guān)系時(shí),有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合3相交兩直線的夾角和兩直線間的到角是兩個(gè)不同的概念:夾角特指相

23、交兩直線所成的較小角,范圍是 ,而其到角是帶有方向的角,范圍是 注:點(diǎn)到直線的距離公式特別: ;4線性規(guī)劃中幾個(gè)概念:約束條件、可行解、可行域、目標(biāo)函數(shù)、最優(yōu)解5圓的方程:最簡(jiǎn)方程 ;標(biāo)準(zhǔn)方程 ;一般式方程  ;參數(shù)方程 為參數(shù));直徑式方程  注意:(1)在圓的一般式方程中,圓心坐標(biāo)和半徑分別是 (2)圓的參數(shù)方程為“三角換元”提供了樣板,常用三角換元有:, ,  6解決直線與圓的關(guān)系問(wèn)題有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形,切線長(zhǎng)定理、割線定理、弦切角定理等等)的作用!

24、”(1)過(guò)圓 上一點(diǎn) 圓的切線方程是: ,過(guò)圓 上一點(diǎn) 圓的切線方程是: ,過(guò)圓  上一點(diǎn) 圓的切線方程是: 如果點(diǎn) 在圓外,那么上述直線方程表示過(guò)點(diǎn) 兩切線上兩切點(diǎn)的“切點(diǎn)弦”方程如果點(diǎn) 在圓內(nèi),那么上述直線方程表示與圓相離且垂直于 ( 為圓心)的直線方程, ( 為圓心 到直線的距離)7曲線 與 的交點(diǎn)坐標(biāo) 方程組 的解;過(guò)兩圓 、 交點(diǎn)的圓(公共弦)系為 ,當(dāng)且僅當(dāng)無(wú)平方項(xiàng)時(shí), 為兩圓公共弦所在直線方程八、圓錐曲線1圓錐曲線的兩個(gè)定義,及其“括號(hào)”內(nèi)的限制條件,在圓錐曲線問(wèn)題中,如果涉及到其兩焦點(diǎn)(兩相異定點(diǎn)),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點(diǎn)、準(zhǔn)線(一定點(diǎn)和不過(guò)

25、該點(diǎn)的一定直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點(diǎn)三角形的問(wèn)題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應(yīng)用(1)注意:圓錐曲線第一定義與配方法的綜合運(yùn)用;圓錐曲線第二定義是:“點(diǎn)點(diǎn)距為分子、點(diǎn)線距為分母”,橢圓 點(diǎn)點(diǎn)距除以點(diǎn)線距商是小于1的正數(shù),雙曲線 點(diǎn)點(diǎn)距除以點(diǎn)線距商是大于1的正數(shù),拋物線 點(diǎn)點(diǎn)距除以點(diǎn)線距商是等于1圓錐曲線的焦半徑公式如下圖:                  

26、0;       2圓錐曲線的幾何性質(zhì):圓錐曲線的對(duì)稱性、圓錐曲線的范圍、圓錐曲線的特殊點(diǎn)線、圓錐曲線的變化趨勢(shì)其中 ,橢圓中 、雙曲線中 重視“特征直角三角形、焦半徑的最值、焦點(diǎn)弦的最值及其頂點(diǎn)、焦點(diǎn)、準(zhǔn)線等相互之間與坐標(biāo)系無(wú)關(guān)的幾何性質(zhì)”,尤其是雙曲線中焦半徑最值、焦點(diǎn)弦最值的特點(diǎn)注意:等軸雙曲線的意義和性質(zhì)3在直線與圓錐曲線的位置關(guān)系問(wèn)題中,有“函數(shù)方程思想”和“數(shù)形結(jié)合思想”兩種思路,等價(jià)轉(zhuǎn)化求解特別是:直線與圓錐曲線相交的必要條件是他們構(gòu)成的方程組有實(shí)數(shù)解,當(dāng)出現(xiàn)一元二次方程時(shí),務(wù)必“判別式0”,尤其是在應(yīng)用韋達(dá)定

27、理解決問(wèn)題時(shí),必須先有“判別式0”直線與拋物線(相交不一定交于兩點(diǎn))、雙曲線位置關(guān)系(相交的四種情況)的特殊性,應(yīng)謹(jǐn)慎處理在直線與圓錐曲線的位置關(guān)系問(wèn)題中,常與“弦”相關(guān),“平行弦”問(wèn)題的關(guān)鍵是“斜率”、“中點(diǎn)弦”問(wèn)題關(guān)鍵是“韋達(dá)定理”或“小小直角三角形”或“點(diǎn)差法”、“長(zhǎng)度(弦長(zhǎng))”問(wèn)題關(guān)鍵是長(zhǎng)度(弦長(zhǎng))公式( , ,   )或“小小直角三角形”如果在一條直線上出現(xiàn)“三個(gè)或三個(gè)以上的點(diǎn)”,那么可選擇應(yīng)用“斜率”為橋梁轉(zhuǎn)化4要重視常見(jiàn)的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點(diǎn)法、參數(shù)法、交軌法、向量法等), 以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何

28、法、代數(shù)法、方程函數(shù)思想、數(shù)形結(jié)合思想、分類討論思想和等價(jià)轉(zhuǎn)化思想等),這是解析幾何的兩類基本問(wèn)題,也是解析幾何的基本出發(fā)點(diǎn)注意:如果問(wèn)題中涉及到平面向量知識(shí),那么應(yīng)從已知向量的特點(diǎn)出發(fā),考慮選擇向量的幾何形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化,還是選擇向量的代數(shù)形式進(jìn)行“摘帽子或脫靴子”轉(zhuǎn)化曲線與曲線方程、軌跡與軌跡方程是兩個(gè)不同的概念,尋求軌跡或軌跡方程時(shí)應(yīng)注意軌跡上特殊點(diǎn)對(duì)軌跡的“完備性與純粹性”的影響在與圓錐曲線相關(guān)的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結(jié)合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問(wèn)題為代數(shù)問(wèn)題、“分類討論思想”化整為零分化處理、“求值構(gòu)造等式、求變量范圍構(gòu)造不

29、等關(guān)系”等等九、直線、平面、簡(jiǎn)單多面體1計(jì)算異面直線所成角的關(guān)鍵是平移(補(bǔ)形)轉(zhuǎn)化為兩直線的夾角計(jì)算2計(jì)算直線與平面所成的角關(guān)鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理, ),或先運(yùn)用等積法求點(diǎn)到直線的距離,后虛擬直角三角形求解注:一斜線與平面上以斜足為頂點(diǎn)的角的兩邊所成角相等 斜線在平面上射影為角的平分線3空間平行垂直關(guān)系的證明,主要依據(jù)相關(guān)定義、公理、定理和空間向量進(jìn)行,請(qǐng)重視線面平行關(guān)系、線面垂直關(guān)系(三垂線定理及其逆定理)的橋梁作用注意:書(shū)寫(xiě)證明過(guò)程需規(guī)范特別聲明:證明計(jì)算過(guò)程中,若有“中點(diǎn)”等特殊點(diǎn)線,則常借助于“中位線、重心”等知識(shí)轉(zhuǎn)

30、化在證明計(jì)算過(guò)程中常將運(yùn)用轉(zhuǎn)化思想,將具體問(wèn)題轉(zhuǎn)化 (構(gòu)造) 為特殊幾何體(如三棱錐、正方體、長(zhǎng)方體、三棱柱、四棱柱等)中問(wèn)題,并獲得去解決如果根據(jù)已知條件,在幾何體中有“三條直線兩兩垂直”,那么往往以此為基礎(chǔ),建立空間直角坐標(biāo)系,并運(yùn)用空間向量解決問(wèn)題4直棱柱、正棱柱、平行六面體、長(zhǎng)方體、正方體、正四面體、棱錐、正棱錐關(guān)于側(cè)棱、側(cè)面、對(duì)角面、平行于底的截面的幾何體性質(zhì)如長(zhǎng)方體中:對(duì)角線長(zhǎng) ,棱長(zhǎng)總和為 ,全(表)面積為 ,(結(jié)合 可得關(guān)于他們的等量關(guān)系,結(jié)合基本不等式還可建立關(guān)于他們的不等關(guān)系式), ;如三棱錐中:側(cè)棱長(zhǎng)相等(側(cè)棱與底面所成角相等) 頂點(diǎn)在底上射影為底面外心,側(cè)棱兩兩垂直(兩

31、對(duì)對(duì)棱垂直) 頂點(diǎn)在底上射影為底面垂心,斜高長(zhǎng)相等(側(cè)面與底面所成相等)且頂點(diǎn)在底上在底面內(nèi) 頂點(diǎn)在底上射影為底面內(nèi)心如正四面體和正方體中: 5求幾何體體積的常規(guī)方法是:公式法、割補(bǔ)法、等積(轉(zhuǎn)換)法、比例(性質(zhì)轉(zhuǎn)換)法等注意:補(bǔ)形:三棱錐 三棱柱 平行六面體      分割:三棱柱中三棱錐、四三棱錐、三棱柱的體積關(guān)系是        6多面體是由若干個(gè)多邊形圍成的幾何體棱柱和棱錐是特殊的多面體正多面體的每個(gè)面都是相同邊數(shù)的正多邊形,以每個(gè)頂點(diǎn)為其一端都有相同數(shù)目的

32、棱,這樣的多面體只有五種,  即正四面體、正六面體、正八面體、正十二面體、正二十面體               9球體積公式 ,球表面積公式 ,是兩個(gè)關(guān)于球的幾何度量公式它們都是球半徑及的函數(shù)十、導(dǎo)  數(shù)1導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù)) , (C為常數(shù)), , 2多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性:在一個(gè)區(qū)間上 (個(gè)別點(diǎn)取等號(hào))  在此區(qū)間

33、上為增函數(shù)在一個(gè)區(qū)間上 (個(gè)別點(diǎn)取等號(hào))  在此區(qū)間上為減函數(shù)3導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:(1)函數(shù) 在 處有 且“左正右負(fù)”  在 處取極大值;函數(shù) 在 處有 且“左負(fù)右正”  在 處取極小值注意:在 處有 是函數(shù) 在 處取極值的必要非充分條件求函數(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值特別是給出函數(shù)極大(小)值的條件,一定要既考慮 ,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記單調(diào)性與最值(極值)的研究要注意列表?。?)函數(shù) 在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“最大值”;函數(shù)

34、 在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域 再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對(duì)應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小評(píng)論(0)150相關(guān)知識(shí)· 2014-11-13高中數(shù)學(xué)知識(shí)點(diǎn)詳細(xì)總結(jié)· 2011-08-18跪求高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7· 2010-07-30需要一份最基礎(chǔ)的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9· 2011-06-19高中數(shù)學(xué)必修一的知識(shí)點(diǎn)總結(jié)? 12· 2011-02-13高中數(shù)學(xué)必修(2)知

35、識(shí)點(diǎn)總結(jié) 2更多相關(guān)知識(shí)>>相關(guān)搜索· 高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)全· 高中數(shù)學(xué)知識(shí)點(diǎn)大總結(jié)· 小學(xué)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)· 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)· 高中數(shù)學(xué)橢圓知識(shí)點(diǎn)· 高中數(shù)學(xué)知識(shí)點(diǎn)歸納· 高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)· 高中數(shù)學(xué)雙曲線知識(shí)點(diǎn)其他回答 (4)幸福牽手_ 2010-07-241 過(guò)兩點(diǎn)有且只有一條直線 2 兩點(diǎn)之間線段最短 3 同角或等角的補(bǔ)角相等 4 同角或等角的余角相等 5 過(guò)一點(diǎn)有且只有一條直線和已知直線垂直 6 直線外一點(diǎn)與直線上各點(diǎn)連

36、接的所有線段中,垂線段最短 7 平行公理 經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯(cuò)角相等,兩直線平行 11 同旁內(nèi)角互補(bǔ),兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯(cuò)角相等 14 兩直線平行,同旁內(nèi)角互補(bǔ) 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18 推論

37、1 直角三角形的兩個(gè)銳角互余 19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等 24 推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25 邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的

38、兩個(gè)直角三角形全等 27 定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,

39、那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35 推論1 三個(gè)角都相等的三角形是等邊三角形 36 推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等 40 逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42 定理1 關(guān)于某條直線對(duì)

40、稱的兩個(gè)圖形是全等形 43 定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線 44定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上 45逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2 ,那么這個(gè)三角形是直角三角形 48定理 四邊形的內(nèi)角和等于360° 49四邊形的

41、外角和等于360° 50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180° 51推論 任意多邊的外角和等于360° 52平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相平分 56平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3

42、對(duì)角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61矩形性質(zhì)定理2 矩形的對(duì)角線相等 62矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64菱形性質(zhì)定理1 菱形的四條邊都相等 65菱形性質(zhì)定理2 菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角 66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形

43、 68菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分 73逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一 點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75等腰梯形的兩條對(duì)角線相等

44、 76等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯形是等腰梯形 77對(duì)角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那么在其他直線上截得的線段也相等 79 推論1 經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80 推論2 經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第 三邊 81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半 82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)&#

45、247;2 S=L×h 83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性質(zhì) 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性質(zhì) 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng) 線段成比例 87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例 88 定理 如果一條直

46、線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似 91 相似三角形判定定理1 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92 直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93 判定定理2 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS) 94 判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

47、 95 定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三 角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96 性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平 分線的比都等于相似比 97 性質(zhì)定理2 相似三角形周長(zhǎng)的比等于相似比 98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值 100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值 101圓

48、是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104同圓或等圓的半徑相等 105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半 徑的圓 106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直 平分線 107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距 離相等的一條直線 109定理 不在同一直線上的三點(diǎn)確定一

49、個(gè)圓。 110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧 112推論2 圓的兩條平行弦所夾的弧相等 113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等 115推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的

50、弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑 119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角 121直線L和O相交 dr 直線L和O相切 d=r 直線L和O

51、相離 dr 122切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線 123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑 124推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn) 125推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心 126切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角 127圓的外切四邊形的兩組對(duì)邊的和相等 128弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 13

52、0相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積 相等 131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項(xiàng) 132切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割 線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng) 133推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等 134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內(nèi)切 d=R-r(Rr) 兩圓內(nèi)含

53、dR-r(Rr) 136定理 相交兩圓的連心線垂直平分兩圓的公共弦 137定理 把圓分成n(n3): 依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°n 140定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141正n邊形的面積Sn=pnrn2 p表示正n邊形的周長(zhǎng) 142

54、正三角形面積3a4 a表示邊長(zhǎng) 143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°n=360°化為(n-2)(k-2)=4 144弧長(zhǎng)計(jì)算公式:L=n兀R180 145扇形面積公式:S扇形=n兀R2360=LR2 146內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r) 實(shí)用工具:常用數(shù)學(xué)公式 公式分類 公式表達(dá)式 乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4ac=0 注:方程有兩個(gè)相等的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論