




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2022-4-12算法設(shè)計(jì)與分析課件2n將要求解的較大規(guī)模的問(wèn)題分割成k個(gè)更小規(guī)模的子問(wèn)題。nT(n/2)T(n/2)T(n/2)T(n/2)T(n)= n對(duì)這k個(gè)子問(wèn)題分別求解。如果子問(wèn)題的規(guī)模仍然不夠小,則再劃分為k個(gè)子問(wèn)題,如此遞歸的進(jìn)行下去,直到問(wèn)題規(guī)模足夠小,很容易求出其解為止。2022-4-12算法設(shè)計(jì)與分析課件3n對(duì)這k個(gè)子問(wèn)題分別求解。如果子問(wèn)題的規(guī)模仍然不夠小,則再劃分為k個(gè)子問(wèn)題,如此遞歸的進(jìn)行下去,直到問(wèn)題規(guī)模足夠小,很容易求出其解為止。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4
2、)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4) n將求出的小規(guī)模的問(wèn)題的解合并為一個(gè)更大規(guī)模的問(wèn)題的解,自底向上逐步求出原來(lái)問(wèn)題的解。 2022-4-12算法設(shè)計(jì)與分析課件4n將求出的小規(guī)模的問(wèn)題的解合并為一個(gè)更大規(guī)模的問(wèn)題的解,自底向上逐步求出原來(lái)問(wèn)題的解。nT(n)=n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)2022-4-12算法設(shè)計(jì)與分析課件5n將
3、求出的小規(guī)模的問(wèn)題的解合并為一個(gè)更大規(guī)模的問(wèn)題的解,自底向上逐步求出原來(lái)問(wèn)題的解。nT(n)=n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4)n/2T(n/4) T(n/4) T(n/4) T(n/4) 分治法的設(shè)計(jì)思想是,將一個(gè)難以直接解決的大問(wèn)題,分治法的設(shè)計(jì)思想是,將一個(gè)難以直接解決的大問(wèn)題,分割成一些規(guī)模較小的相同問(wèn)題,以便各個(gè)擊破,分割成一些規(guī)模較小的相同問(wèn)題,以便各個(gè)擊破,分而治之。分而治之。凡治眾如治寡,分?jǐn)?shù)是也。凡治眾如治寡,分?jǐn)?shù)是也。-孫子兵法孫
4、子兵法2022-4-12算法設(shè)計(jì)與分析課件62.1 n直接或間接地調(diào)用自身的算法稱為遞歸算法遞歸算法。用函數(shù)自身給出定義的函數(shù)稱為遞歸函數(shù)遞歸函數(shù)。n由分治法產(chǎn)生的子問(wèn)題往往是原問(wèn)題的較小模式,這就為使用遞歸技術(shù)提供了方便。在這種情況下,反復(fù)應(yīng)用分治手段,可以使子問(wèn)題與原問(wèn)題類型一致而其規(guī)模卻不斷縮小,最終使子問(wèn)題縮小到很容易直接求出其解。這自然導(dǎo)致遞歸過(guò)程的產(chǎn)生。n分治與遞歸像一對(duì)孿生兄弟,經(jīng)常同時(shí)應(yīng)用在算法設(shè)計(jì)之中,并由此產(chǎn)生許多高效算法。下面來(lái)看幾個(gè)實(shí)例。下面來(lái)看幾個(gè)實(shí)例。2022-4-12算法設(shè)計(jì)與分析課件72.1 例例1 1 階乘函數(shù)階乘函數(shù)階乘函數(shù)可遞歸地定義為:00)!1(1!n
5、nnnn邊界條件邊界條件遞歸方程遞歸方程邊界條件與遞歸方程是遞歸函數(shù)的二個(gè)要素,遞歸函數(shù)只有具備了這兩個(gè)要素,才能在有限次計(jì)算后得出結(jié)果。2022-4-12算法設(shè)計(jì)與分析課件82.1 例例2 Fibonacci2 Fibonacci數(shù)列數(shù)列無(wú)窮數(shù)列1,1,2,3,5,8,13,21,34,55,被稱為Fibonacci數(shù)列。它可以遞歸地定義為:邊界條件邊界條件遞歸方程遞歸方程110)2() 1(11)(nnnnFnFnF第n個(gè)Fibonacci數(shù)可遞歸地計(jì)算如下:public static int fibonacci(int n) if (n 1時(shí),perm(R)由(r1)perm(R1),(
6、r2)perm(R2),(rn)perm(Rn)構(gòu)成。 2022-4-12算法設(shè)計(jì)與分析課件142.1 例例5 5 整數(shù)劃分問(wèn)題整數(shù)劃分問(wèn)題將正整數(shù)n表示成一系列正整數(shù)之和:n=n1+n2+nk,其中n1n2nk1,k1。正整數(shù)n的這種表示稱為正整數(shù)n的劃分。求正整數(shù)n的不同劃分個(gè)數(shù)。 例如正整數(shù)6有如下11種不同的劃分: 6; 5+1; 4+2,4+1+1; 3+3,3+2+1,3+1+1+1; 2+2+2,2+2+1+1,2+1+1+1+1; 1+1+1+1+1+1。2022-4-12算法設(shè)計(jì)與分析課件15(2) q(n,m)=q(n,n),mn;最大加數(shù)n1實(shí)際上不能大于n。因此,q(1
7、,m)=1。(1) q(n,1)=1,n1;當(dāng)最大加數(shù)n1不大于1時(shí),任何正整數(shù)n只有一種劃分形式,即nn111 (4) q(n,m)=q(n,m-1)+q(n-m,m),nm1;正整數(shù)n的最大加數(shù)n1不大于m的劃分由n1=m的劃分和n1n-1 的劃分組成。(3) q(n,n)=1+q(n,n-1);正整數(shù)n的劃分由n1=n的劃分和n1n-1的劃分組成。2.1 例例5 5 整數(shù)劃分問(wèn)題整數(shù)劃分問(wèn)題前面的幾個(gè)例子中,問(wèn)題本身都具有比較明顯的遞歸關(guān)系,因而容易用遞歸函數(shù)直接求解。在本例中,如果設(shè)p(n)為正整數(shù)n的劃分?jǐn)?shù),則難以找到遞歸關(guān)系,因此考慮增加一個(gè)自變量:將最大加數(shù)n1不大于m的劃分個(gè)數(shù)
8、記作q(n,m)??梢越(n,m)的如下遞歸關(guān)系。2022-4-12算法設(shè)計(jì)與分析課件1611, 1),() 1,() 1,(1),(1),(mnmnmnmnmmnqmnqnnqnnqmnq2.1 例例5 5 整數(shù)劃分問(wèn)題整數(shù)劃分問(wèn)題前面的幾個(gè)例子中,問(wèn)題本身都具有比較明顯的遞歸關(guān)系,因而容易用遞歸函數(shù)直接求解。在本例中,如果設(shè)p(n)為正整數(shù)n的劃分?jǐn)?shù),則難以找到遞歸關(guān)系,因此考慮增加一個(gè)自變量:將最大加數(shù)n1不大于m的劃分個(gè)數(shù)記作q(n,m)??梢越(n,m)的如下遞歸關(guān)系。正整數(shù)n的劃分?jǐn)?shù)p(n)=q(n,n)。 2022-4-12算法設(shè)計(jì)與分析課件172.1 例例6 Hanoi
9、6 Hanoi塔問(wèn)題塔問(wèn)題設(shè)a,b,c是3個(gè)塔座。開(kāi)始時(shí),在塔座a上有一疊共n個(gè)圓盤(pán),這些圓盤(pán)自下而上,由大到小地疊在一起。各圓盤(pán)從小到大編號(hào)為1,2,n,現(xiàn)要求將塔座a上的這一疊圓盤(pán)移到塔座b上,并仍按同樣順序疊置。在移動(dòng)圓盤(pán)時(shí)應(yīng)遵守以下移動(dòng)規(guī)則:規(guī)則1:每次只能移動(dòng)1個(gè)圓盤(pán);規(guī)則2:任何時(shí)刻都不允許將大的圓盤(pán)壓在較小的圓盤(pán)之上;規(guī)則3:在滿足移動(dòng)規(guī)則1和2的前提下,可將圓盤(pán)移至a,b,c中任一塔座上。2022-4-12算法設(shè)計(jì)與分析課件18在問(wèn)題規(guī)模較大時(shí),較難找到一般的方法,因此我們嘗試用遞歸技術(shù)來(lái)解決這個(gè)問(wèn)題。當(dāng)n=1時(shí),問(wèn)題比較簡(jiǎn)單。此時(shí),只要將編號(hào)為1的圓盤(pán)從塔座a直接移至塔座b上
10、即可。當(dāng)n1時(shí),需要利用塔座c作為輔助塔座。此時(shí)若能設(shè)法將n-1個(gè)較小的圓盤(pán)依照移動(dòng)規(guī)則從塔座a移至塔座c,然后,將剩下的最大圓盤(pán)從塔座a移至塔座b,最后,再設(shè)法將n-1個(gè)較小的圓盤(pán)依照移動(dòng)規(guī)則從塔座c移至塔座b。由此可見(jiàn),n個(gè)圓盤(pán)的移動(dòng)問(wèn)題可分為2次n-1個(gè)圓盤(pán)的移動(dòng)問(wèn)題,這又可以遞歸地用上述方法來(lái)做。由此可以設(shè)計(jì)出解Hanoi塔問(wèn)題的遞歸算法如下。2.1 例例6 Hanoi6 Hanoi塔問(wèn)題塔問(wèn)題 public static void hanoi(int n, int a, int b, int c) if (n 0) hanoi(n-1, a, c, b); move(a,b); ha
11、noi(n-1, c, b, a); 2022-4-12算法設(shè)計(jì)與分析課件19優(yōu)點(diǎn):優(yōu)點(diǎn):結(jié)構(gòu)清晰,可讀性強(qiáng),而且容易用數(shù)學(xué)歸納法來(lái)結(jié)構(gòu)清晰,可讀性強(qiáng),而且容易用數(shù)學(xué)歸納法來(lái)證明算法的正確性,因此它為設(shè)計(jì)算法、調(diào)試程序帶證明算法的正確性,因此它為設(shè)計(jì)算法、調(diào)試程序帶來(lái)很大方便。來(lái)很大方便。缺點(diǎn):缺點(diǎn):遞歸算法的運(yùn)行效率較低,無(wú)論是耗費(fèi)的計(jì)算時(shí)遞歸算法的運(yùn)行效率較低,無(wú)論是耗費(fèi)的計(jì)算時(shí)間還是占用的存儲(chǔ)空間都比非遞歸算法要多。間還是占用的存儲(chǔ)空間都比非遞歸算法要多。2022-4-12算法設(shè)計(jì)與分析課件20解決方法:解決方法:在遞歸算法中消除遞歸調(diào)用,使其轉(zhuǎn)化在遞歸算法中消除遞歸調(diào)用,使其轉(zhuǎn)化為非遞
12、歸算法。為非遞歸算法。1.1.采用一個(gè)用戶定義的棧來(lái)模擬系統(tǒng)的遞歸調(diào)用工采用一個(gè)用戶定義的棧來(lái)模擬系統(tǒng)的遞歸調(diào)用工作棧。該方法通用性強(qiáng),但本質(zhì)上還是遞歸,只作棧。該方法通用性強(qiáng),但本質(zhì)上還是遞歸,只不過(guò)人工做了本來(lái)由編譯器做的事情,優(yōu)化效果不過(guò)人工做了本來(lái)由編譯器做的事情,優(yōu)化效果不明顯。不明顯。2.2.用遞推來(lái)實(shí)現(xiàn)遞歸函數(shù)。用遞推來(lái)實(shí)現(xiàn)遞歸函數(shù)。3.3.通過(guò)通過(guò)CooperCooper變換、變換、反演變換能反演變換能將一些遞歸轉(zhuǎn)化為將一些遞歸轉(zhuǎn)化為尾遞歸,從而迭代求出結(jié)果。尾遞歸,從而迭代求出結(jié)果。 后兩種方法在時(shí)空復(fù)雜度上均有較大改善,后兩種方法在時(shí)空復(fù)雜度上均有較大改善,但其適用范圍有限
13、。但其適用范圍有限。2022-4-12算法設(shè)計(jì)與分析課件21n該問(wèn)題的規(guī)模縮小到一定的程度就可以容易地解決;該問(wèn)題的規(guī)??s小到一定的程度就可以容易地解決;n該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題,即該問(wèn)題具有該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題,即該問(wèn)題具有最優(yōu)子結(jié)構(gòu)性質(zhì)最優(yōu)子結(jié)構(gòu)性質(zhì)n利用該問(wèn)題分解出的子問(wèn)題的解可以合并為該問(wèn)題的解;利用該問(wèn)題分解出的子問(wèn)題的解可以合并為該問(wèn)題的解;n該問(wèn)題所分解出的各個(gè)子問(wèn)題是相互獨(dú)立的,即子問(wèn)題之間不該問(wèn)題所分解出的各個(gè)子問(wèn)題是相互獨(dú)立的,即子問(wèn)題之間不包含公共的子問(wèn)題。包含公共的子問(wèn)題。 因?yàn)閱?wèn)題的計(jì)算復(fù)雜性一般是隨著問(wèn)題規(guī)模的增加而增加,因此大
14、部分問(wèn)題滿足這個(gè)特征。這條特征是應(yīng)用分治法的前提,它也是大多數(shù)問(wèn)題可以滿足的,此特征反映了遞歸思想的應(yīng)用能否利用分治法完全取決于問(wèn)題是否具有這條特征,如果具備了前兩條特征,而不具備第三條特征,則可以考慮貪心算法貪心算法或動(dòng)態(tài)規(guī)劃動(dòng)態(tài)規(guī)劃。這條特征涉及到分治法的效率,如果各子問(wèn)題是不獨(dú)立的,則分治法要做許多不必要的工作,重復(fù)地解公共的子問(wèn)題,此時(shí)雖然也可用分治法,但一般用動(dòng)態(tài)規(guī)劃動(dòng)態(tài)規(guī)劃較好。2022-4-12算法設(shè)計(jì)與分析課件22divide-and-conquer(P) if ( | P | = n0) adhoc(P); /解決小規(guī)模的問(wèn)題 divide P into smaller su
15、binstances P1,P2,.,Pk;/分解問(wèn)題 for (i=1,i=k,i+) yi=divide-and-conquer(Pi); /遞歸的解各子問(wèn)題 return merge(y1,.,yk); /將各子問(wèn)題的解合并為原問(wèn)題的解 人們從大量實(shí)踐中發(fā)現(xiàn),在用分治法設(shè)計(jì)算法時(shí),最好使子問(wèn)題的規(guī)模大致相同。即將一個(gè)問(wèn)題分成大小相等的k個(gè)子問(wèn)題的處理方法是行之有效的。這種使子問(wèn)題規(guī)模大致相等的做法是出自一種平衡平衡(balancing)子問(wèn)題子問(wèn)題的思想,它幾乎總是比子問(wèn)題規(guī)模不等的做法要好。2022-4-12算法設(shè)計(jì)與分析課件23一個(gè)分治法將規(guī)模為n的問(wèn)題分成k個(gè)規(guī)模為nm的子問(wèn)題去解
16、。設(shè)分解閥值n0=1,且adhoc解規(guī)模為1的問(wèn)題耗費(fèi)1個(gè)單位時(shí)間。再設(shè)將原問(wèn)題分解為k個(gè)子問(wèn)題以及用merge將k個(gè)子問(wèn)題的解合并為原問(wèn)題的解需用f(n)個(gè)單位時(shí)間。用T(n)表示該分治法解規(guī)模為|P|=n的問(wèn)題所需的計(jì)算時(shí)間,則有:11)()/() 1 ()(nnnfmnkTOnT通過(guò)迭代法求得方程的解:1log0log)/()(nmjjjkmmnfknnT注意注意:遞歸方程及其解只給出n等于m的方冪時(shí)T(n)的值,但是如果認(rèn)為T(mén)(n)足夠平滑,那么由n等于m的方冪時(shí)T(n)的值可以估計(jì)T(n)的增長(zhǎng)速度。通常假定T(n)是單調(diào)上升的,從而當(dāng)minmi+1時(shí),T(mi)T(n)T(mi+1
17、)。 2022-4-12算法設(shè)計(jì)與分析課件24分析:如果n=1即只有一個(gè)元素,則只要比較這個(gè)元素和x就可以確定x是否在表中。因此這個(gè)問(wèn)題滿足分治法的第一個(gè)適用條件給定已按升序排好序的給定已按升序排好序的n個(gè)元素個(gè)元素a0:n-1,現(xiàn)要在這現(xiàn)要在這n個(gè)元素中找個(gè)元素中找出一特定元素出一特定元素x。分析:分析:該問(wèn)題的規(guī)??s小到一定的程度就可以容易地解決;該問(wèn)題的規(guī)??s小到一定的程度就可以容易地解決;該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題;分解出的子問(wèn)題的解可以合并為原問(wèn)題的解;分解出的子問(wèn)題的解可以合并為原問(wèn)題的解;分解出的各個(gè)子問(wèn)題是相互獨(dú)立的。分解出
18、的各個(gè)子問(wèn)題是相互獨(dú)立的。 2022-4-12算法設(shè)計(jì)與分析課件25分析:比較x和a的中間元素amid,若x=amid,則x在L中的位置就是mid;如果xai,同理我們只要在amid的后面查找x即可。無(wú)論是在前面還是后面查找x,其方法都和在a中查找x一樣,只不過(guò)是查找的規(guī)??s小了。這就說(shuō)明了此問(wèn)題滿足分治法的第二個(gè)和第三個(gè)適用條件。給定已按升序排好序的給定已按升序排好序的n個(gè)元素個(gè)元素a0:n-1,現(xiàn)要在這現(xiàn)要在這n個(gè)元素中找個(gè)元素中找出一特定元素出一特定元素x。2022-4-12算法設(shè)計(jì)與分析課件26分析:很顯然此問(wèn)題分解出的子問(wèn)題相互獨(dú)立,即在ai的前面或后面查找x是獨(dú)立的子問(wèn)題,因此滿足
19、分治法的第四個(gè)適用條件。給定已按升序排好序的給定已按升序排好序的n個(gè)元素個(gè)元素a0:n-1,現(xiàn)要在這現(xiàn)要在這n個(gè)元素中找個(gè)元素中找出一特定元素出一特定元素x。分析:分析:該問(wèn)題的規(guī)??s小到一定的程度就可以容易地解決;該問(wèn)題的規(guī)??s小到一定的程度就可以容易地解決;該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題;分解出的子問(wèn)題的解可以合并為原問(wèn)題的解;分解出的子問(wèn)題的解可以合并為原問(wèn)題的解;分解出的各個(gè)子問(wèn)題是相互獨(dú)立的。分解出的各個(gè)子問(wèn)題是相互獨(dú)立的。 2022-4-12算法設(shè)計(jì)與分析課件27給定已按升序排好序的給定已按升序排好序的n個(gè)元素個(gè)元素a0:n-1,現(xiàn)
20、要在這現(xiàn)要在這n個(gè)元素中找個(gè)元素中找出一特定元素出一特定元素x。據(jù)此容易設(shè)計(jì)出二分搜索算法二分搜索算法:public static int binarySearch(int a, int x, int n) / 在 a0 = a1 = . = an-1 中搜索 x / 找到x時(shí)返回其在數(shù)組中的位置,否則返回-1 int left = 0; int right = n - 1; while (left amiddle) left = middle + 1; else right = middle - 1; return -1; / 未找到x 算法復(fù)雜度分析:算法復(fù)雜度分析:每執(zhí)行一次算法的whi
21、le循環(huán), 待搜索數(shù)組的大小減少一半。因此,在最壞情況下,while循環(huán)被執(zhí)行了O(logn) 次。循環(huán)體內(nèi)運(yùn)算需要O(1) 時(shí)間,因此整個(gè)算法在最壞情況下的計(jì)算時(shí)間復(fù)雜性為O(logn) 。2022-4-12算法設(shè)計(jì)與分析課件28 請(qǐng)?jiān)O(shè)計(jì)一個(gè)有效的算法,可以進(jìn)行兩個(gè)請(qǐng)?jiān)O(shè)計(jì)一個(gè)有效的算法,可以進(jìn)行兩個(gè)n n位大整數(shù)的乘法運(yùn)算位大整數(shù)的乘法運(yùn)算u小學(xué)的方法:O(n2) 效率太低u分治法: 復(fù)雜度分析復(fù)雜度分析T(n)=O(n2) 沒(méi)有改進(jìn)沒(méi)有改進(jìn)11)()2/(4) 1 ()(nnnOnTOnTabcdX = Y = X = a 2n/2 + b Y = c 2n/2 + d XY = ac 2
22、n + (ad+bc) 2n/2 + bd 2022-4-12算法設(shè)計(jì)與分析課件29 請(qǐng)?jiān)O(shè)計(jì)一個(gè)有效的算法,可以進(jìn)行兩個(gè)請(qǐng)?jiān)O(shè)計(jì)一個(gè)有效的算法,可以進(jìn)行兩個(gè)n n位大整數(shù)的乘法運(yùn)算位大整數(shù)的乘法運(yùn)算u小學(xué)的方法:O(n2) 效率太低u分治法: XY = ac 2n + (ad+bc) 2n/2 + bd 為了降低時(shí)間復(fù)雜度,必須減少乘法的次數(shù)。1.XY = ac 2n + (a-c)(b-d)+ac+bd) 2n/2 + bd2.XY = ac 2n + (a+c)(b+d)-ac-bd) 2n/2 + bd復(fù)雜度分析復(fù)雜度分析T(n)=O(nlog3) =O(n1.59) 較大的改進(jìn)較大的改進(jìn)
23、11)()2/(3) 1 ()(nnnOnTOnT細(xì)節(jié)問(wèn)題細(xì)節(jié)問(wèn)題:兩個(gè)XY的復(fù)雜度都是O(nlog3),但考慮到a+c,b+d可能得到m+1位的結(jié)果,使問(wèn)題的規(guī)模變大,故不選擇第2種方案。2022-4-12算法設(shè)計(jì)與分析課件30 請(qǐng)?jiān)O(shè)計(jì)一個(gè)有效的算法,可以進(jìn)行兩個(gè)請(qǐng)?jiān)O(shè)計(jì)一個(gè)有效的算法,可以進(jìn)行兩個(gè)n n位大整數(shù)的乘法運(yùn)算位大整數(shù)的乘法運(yùn)算u小學(xué)的方法:O(n2) 效率太低u分治法: O(n1.59) 較大的改進(jìn)u更快的方法?如果將大整數(shù)分成更多段,用更復(fù)雜的方式把它們組合起來(lái),將有可能得到更優(yōu)的算法。最終的,這個(gè)思想導(dǎo)致了快速傅利葉變換快速傅利葉變換(Fast Fourier Transfo
24、rm)的產(chǎn)生。該方法也可以看作是一個(gè)復(fù)雜的分治算法,對(duì)于大整數(shù)乘法,它能在O(nlogn)時(shí)間內(nèi)解決。是否能找到線性時(shí)間的算法?目前為止還沒(méi)有結(jié)果。2022-4-12算法設(shè)計(jì)與分析課件31A和B的乘積矩陣C中的元素Ci,j定義為: nkjkBkiAjiC1若依此定義來(lái)計(jì)算A和B的乘積矩陣C,則每計(jì)算C的一個(gè)元素Cij,需要做n次乘法和n-1次加法。因此,算出矩陣C的 個(gè)元素所需的計(jì)算時(shí)間為O(n3)u傳統(tǒng)方法:O(n3)2022-4-12算法設(shè)計(jì)與分析課件32使用與上例類似的技術(shù),將矩陣A,B和C中每一矩陣都分塊成4個(gè)大小相等的子矩陣。由此可將方程C=AB重寫(xiě)為:u傳統(tǒng)方法:O(n3)u分治法
25、:222112112221121122211211BBBBAAAACCCC由此可得:2112111111BABAC2212121112BABAC2122112121BABAC2222122122BABAC復(fù)雜度分析復(fù)雜度分析T(n)=O(n3) 沒(méi)有改進(jìn)沒(méi)有改進(jìn)22)()2/(8) 1 ()(2nnnOnTOnT2022-4-12算法設(shè)計(jì)與分析課件33為了降低時(shí)間復(fù)雜度,必須減少乘法的次數(shù)。222112112221121122211211BBBBAAAACCCC)(2212111BBAM2212112)(BAAM1122213)(BAAM)(1121224BBAM)(221122115BBAA
26、M)(222122126BBAAM)(121121117BBAAM624511MMMMC2112MMC4321MMC731522MMMMC復(fù)雜度分析復(fù)雜度分析T(n)=O(nlog7) =O(n2.81) 較大的改進(jìn)較大的改進(jìn)22)()2/(7) 1 ()(2nnnOnTOnT2022-4-12算法設(shè)計(jì)與分析課件34u更快的方法?Hopcroft和Kerr已經(jīng)證明(1971),計(jì)算2個(gè)矩陣的乘積,7次乘法是必要的。因此,要想進(jìn)一步改進(jìn)矩陣乘法的時(shí)間復(fù)雜性,就不能再基于計(jì)算22矩陣的7次乘法這樣的方法了?;蛟S應(yīng)當(dāng)研究或矩陣的更好算法。在Strassen之后又有許多算法改進(jìn)了矩陣乘法的計(jì)算時(shí)間復(fù)雜
27、性。目前最好的計(jì)算時(shí)間上界是 O(n2.376)是否能找到O(n2)的算法?目前為止還沒(méi)有結(jié)果。2022-4-12算法設(shè)計(jì)與分析課件35在一個(gè)2k2k 個(gè)方格組成的棋盤(pán)中,恰有一個(gè)方格與其他方格不同,稱該方格為一特殊方格,且稱該棋盤(pán)為一特殊棋盤(pán)。在棋盤(pán)覆蓋問(wèn)題中,要用圖示的4種不同形態(tài)的L型骨牌覆蓋給定的特殊棋盤(pán)上除特殊方格以外的所有方格,且任何2個(gè)L型骨牌不得重疊覆蓋。2022-4-12算法設(shè)計(jì)與分析課件36當(dāng)k0時(shí),將2k2k棋盤(pán)分割為4個(gè)2k-12k-1 子棋盤(pán)(a)所示。特殊方格必位于4個(gè)較小子棋盤(pán)之一中,其余3個(gè)子棋盤(pán)中無(wú)特殊方格。為了將這3個(gè)無(wú)特殊方格的子棋盤(pán)轉(zhuǎn)化為特殊棋盤(pán),可以用
28、一個(gè)L型骨牌覆蓋這3個(gè)較小棋盤(pán)的會(huì)合處,如 (b)所示,從而將原問(wèn)題轉(zhuǎn)化為4個(gè)較小規(guī)模的棋盤(pán)覆蓋問(wèn)題。遞歸地使用這種分割,直至棋盤(pán)簡(jiǎn)化為棋盤(pán)11。 2022-4-12算法設(shè)計(jì)與分析課件37 public void chessBoard(int tr, int tc, int dr, int dc, int size) if (size = 1) return; int t = tile+, / L型骨牌號(hào) s = size/2; / 分割棋盤(pán) / 覆蓋左上角子棋盤(pán) if (dr tr + s & dc tc + s) / 特殊方格在此棋盤(pán)中 chessBoard(tr, tc, dr,
29、 dc, s); else / 此棋盤(pán)中無(wú)特殊方格 / 用 t 號(hào)L型骨牌覆蓋右下角 boardtr + s - 1tc + s - 1 = t; / 覆蓋其余方格 chessBoard(tr, tc, tr+s-1, tc+s-1, s); / 覆蓋右上角子棋盤(pán) if (dr = tc + s) / 特殊方格在此棋盤(pán)中 chessBoard(tr, tc+s, dr, dc, s); else / 此棋盤(pán)中無(wú)特殊方格 / 用 t 號(hào)L型骨牌覆蓋左下角 boardtr + s - 1tc + s = t; / 覆蓋其余方格 chessBoard(tr, tc+s, tr+s-1, tc+s,
30、s); / 覆蓋左下角子棋盤(pán) if (dr = tr + s & dc = tr + s & dc = tc + s) / 特殊方格在此棋盤(pán)中 chessBoard(tr+s, tc+s, dr, dc, s); else / 用 t 號(hào)L型骨牌覆蓋左上角 boardtr + stc + s = t; / 覆蓋其余方格 chessBoard(tr+s, tc+s, tr+s, tc+s, s); 復(fù)雜度分析復(fù)雜度分析T(n)=O(4k) 漸進(jìn)意義下的最優(yōu)算法00) 1 () 1(4) 1 ()(kkOkTOkT2022-4-12算法設(shè)計(jì)與分析課件38基本思想:基本思想:將待排序
31、元素分成大小大致相同的2個(gè)子集合,分別對(duì)2個(gè)子集合進(jìn)行排序,最終將排好序的子集合合并成為所要求的排好序的集合。 public static void mergeSort(Comparable a, int left, int right) if (leftright) /至少有2個(gè)元素 int i=(left+right)/2; /取中點(diǎn) mergeSort(a, left, i); mergeSort(a, i+1, right); merge(a, b, left, i, right); /合并到數(shù)組b copy(a, b, left, right); /復(fù)制回?cái)?shù)組a 復(fù)雜度分析復(fù)雜度分析
32、T(n)=O(nlogn) 漸進(jìn)意義下的最優(yōu)算法11)()2/(2) 1 ()(nnnOnTOnT2022-4-12算法設(shè)計(jì)與分析課件39算法mergeSort的遞歸過(guò)程可以消去。初始序列49 38 65 97 76 13 2738 49 65 97 13 76 27第一步第二步38 49 65 97 13 27 76第三步13 27 38 49 65 76 972022-4-12算法設(shè)計(jì)與分析課件40&最壞時(shí)間復(fù)雜度:最壞時(shí)間復(fù)雜度:O(nlogn)&平均時(shí)間復(fù)雜度:平均時(shí)間復(fù)雜度:O(nlogn)&輔助空間:輔助空間:O(n)&穩(wěn)定性:穩(wěn)定穩(wěn)定性:穩(wěn)定202
33、2-4-12算法設(shè)計(jì)與分析課件41在快速排序中,記錄的比較和交換是從兩端向中間進(jìn)行的,關(guān)鍵字較大的記錄一次就能交換到后面單元,關(guān)鍵字較小的記錄一次就能交換到前面單元,記錄每次移動(dòng)的距離較大,因而總的比較和移動(dòng)次數(shù)較少。private static void qSort(int p, int r) if (p= x的元素交換到左邊區(qū)域 / 將= x的元素交換到右邊區(qū)域 while (true) while (a+pareTo(x) 0); if (i = j) break; MyMath.swap(a, i, j); ap = aj; aj = x; return j; 快速排序具有不穩(wěn)定性不穩(wěn)
34、定性。初始序列6, 7, 5, 2, 5, 8j-;ji5, 7, 5, 2, 6, 8i+;ji5, 6, 5, 2, 7, 8j-;ji5, 2, 5, 6, 7, 8i+;ji完成6, 7, 5, 2, 5, 85, 2, 5 6 7, 82022-4-12算法設(shè)計(jì)與分析課件43private static int randomizedPartition (int p, int r) int i = random(p,r); MyMath.swap(a, i, p); return partition (p, r); 快速排序算法的性能取決于劃分的對(duì)稱性。通過(guò)修改算法partition,
35、可以設(shè)計(jì)出采用隨機(jī)選擇策略的快速排序算法。在快速排序算法的每一步中,當(dāng)數(shù)組還沒(méi)有被劃分時(shí),可以在ap:r中隨機(jī)選出一個(gè)元素作為劃分基準(zhǔn),這樣可以使劃分基準(zhǔn)的選擇是隨機(jī)的,從而可以期望劃分是較對(duì)稱的。&最壞時(shí)間復(fù)雜度:最壞時(shí)間復(fù)雜度:O(n2)&平均時(shí)間復(fù)雜度:平均時(shí)間復(fù)雜度:O(nlogn)&輔助空間:輔助空間:O(n)或或O(logn)&穩(wěn)定性:不穩(wěn)定穩(wěn)定性:不穩(wěn)定2022-4-12算法設(shè)計(jì)與分析課件44給定線性序集中n個(gè)元素和一個(gè)整數(shù)k,1kn,要求找出這n個(gè)元素中第k小的元素private static Comparable randomizedSelec
36、t(int p,int r,int k) if (p=r) return ap; int i=randomizedpartition(p,r), j=i-p+1; if (k=j) return randomizedSelect(p,i,k); else return randomizedSelect(i+1,r,k-j); 在最壞情況下,算法randomizedSelect需要O(n2)計(jì)算時(shí)間但可以證明,算法randomizedSelect可以在O(n)平均時(shí)間內(nèi)找出n個(gè)輸入元素中的第k小元素。2022-4-12算法設(shè)計(jì)與分析課件45如果能在線性時(shí)間內(nèi)找到一個(gè)劃分基準(zhǔn),使得按這個(gè)基準(zhǔn)所劃分
37、出的2個(gè)子數(shù)組的長(zhǎng)度都至少為原數(shù)組長(zhǎng)度的倍(01是某個(gè)正常數(shù)),那么就可以在最壞情況下在最壞情況下用O(n)時(shí)間完成選擇任務(wù)。例如,若=9/10,算法遞歸調(diào)用所產(chǎn)生的子數(shù)組的長(zhǎng)度至少縮短1/10。所以,在最壞情況下,算法所需的計(jì)算時(shí)間T(n)滿足遞歸式T(n)T(9n/10)+O(n) 。由此可得T(n)=O(n)。2022-4-12算法設(shè)計(jì)與分析課件46l將n個(gè)輸入元素劃分成n/5個(gè)組,每組5個(gè)元素,只可能有一個(gè)組不是5個(gè)元素。用任意一種排序算法,將每組中的元素排好序,并取出每組的中位數(shù),共n/5個(gè)。l遞歸調(diào)用select來(lái)找出這n/5個(gè)元素的中位數(shù)。如果n/5是偶數(shù),就找它的2個(gè)中位數(shù)中較
38、大的一個(gè)。以這個(gè)元素作為劃分基準(zhǔn)。設(shè)所有元素互不相同。在這種情況下,找出的基準(zhǔn)x至少比3(n-5)/10個(gè)元素大,因?yàn)樵诿恳唤M中有2個(gè)元素小于本組的中位數(shù),而n/5個(gè)中位數(shù)中又有(n-5)/10個(gè)小于基準(zhǔn)x。同理,基準(zhǔn)x也至少比3(n-5)/10個(gè)元素小。而當(dāng)n75時(shí),3(n-5)/10n/4所以按此基準(zhǔn)劃分所得的2個(gè)子數(shù)組的長(zhǎng)度都至少縮短1/4。2022-4-12算法設(shè)計(jì)與分析課件47private static Comparable select (int p, int r, int k) if (r-p5) /用某個(gè)簡(jiǎn)單排序算法對(duì)數(shù)組ap:r排序; bubbleSort(p,r); re
39、turn ap+k-1; /將ap+5*i至ap+5*i+4的第3小元素與ap+i交換位置; /找中位數(shù)的中位數(shù),r-p-4即上面所說(shuō)的n-5 for ( int i = 0; i=(r-p-4)/5; i+ ) int s=p+5*i, t=s+4; for (int j=0;j3;j+) bubble(s,t-j); MyMath.swap(a, p+i, s+2); Comparable x = select(p, p+(r-p-4)/5, (r-p+6)/10); int i=partition(p,r,x), j=i-p+1; if (k=j) return select(p,i,k
40、); else return select(i+1,r,k-j); 復(fù)雜度分析復(fù)雜度分析T(n)=O(n)7575)4/3()5/()(21nnnTnTnCCnT上述算法將每一組的大小定為5,并選取75作為是否作遞歸調(diào)用的分界點(diǎn)。這2點(diǎn)保證了T(n)的遞歸式中2個(gè)自變量之和n/5+3n/4=19n/20=n,01。這是使T(n)=O(n)的關(guān)鍵之處。當(dāng)然,除了5和75之外,還有其他選擇。2022-4-12算法設(shè)計(jì)與分析課件48給定平面上n個(gè)點(diǎn)的集合S,找其中的一對(duì)點(diǎn),使得在n個(gè)點(diǎn)組成的所有點(diǎn)對(duì)中,該點(diǎn)對(duì)間的距離最小。 u為了使問(wèn)題易于理解和分析,先來(lái)考慮一維一維的情形。此時(shí),S中的n個(gè)點(diǎn)退化為
41、x軸上的n個(gè)實(shí)數(shù) x1,x2,xn。最接近點(diǎn)對(duì)即為這n個(gè)實(shí)數(shù)中相差最小的2個(gè)實(shí)數(shù)。假設(shè)我們用x軸上某個(gè)點(diǎn)m將S劃分為2個(gè)子集S1和S2 ,基于平衡子問(wèn)題平衡子問(wèn)題的思想,用S中各點(diǎn)坐標(biāo)的中位數(shù)來(lái)作分割點(diǎn)。遞歸地在S1和S2上找出其最接近點(diǎn)對(duì)p1,p2和q1,q2,并設(shè)d=min|p1-p2|,|q1-q2|,S中的最接近點(diǎn)對(duì)或者是p1,p2,或者是q1,q2,或者是某個(gè)p3,q3,其中p3S1且q3S2。能否在線性時(shí)間內(nèi)找到能否在線性時(shí)間內(nèi)找到p3,q3?2022-4-12算法設(shè)計(jì)與分析課件49u如果S的最接近點(diǎn)對(duì)是p3,q3,即|p3-q3|d,則p3和q3兩者與m的距離不超過(guò)d,即p3(m
42、-d,m,q3(m,m+d。u由于在S1中,每個(gè)長(zhǎng)度為d的半閉區(qū)間至多包含一個(gè)點(diǎn)(否則必有兩點(diǎn)距離小于d),并且m是S1和S2的分割點(diǎn),因此(m-d,m中至多包含S中的一個(gè)點(diǎn)。由圖可以看出,如果如果(m-d,m中有中有S中的點(diǎn),則此點(diǎn)就是中的點(diǎn),則此點(diǎn)就是S1中最大點(diǎn)。中最大點(diǎn)。u因此,我們用線性時(shí)間就能找到區(qū)間(m-d,m和(m,m+d中所有點(diǎn),即p3和q3。從而我們用線性時(shí)間就可以將從而我們用線性時(shí)間就可以將S1的解和的解和S2的解合并成為的解合并成為S的解的解。能否在線性時(shí)間內(nèi)找到能否在線性時(shí)間內(nèi)找到p3,q3?2022-4-12算法設(shè)計(jì)與分析課件50u下面來(lái)考慮二維的情形。選取一垂直線l:x=m來(lái)作為分割直線。其中m為S中各點(diǎn)x坐標(biāo)的中位數(shù)。由此將S分割為S1和S2。遞歸地在S1和S2上找出其最小距離d1和d2,并設(shè)d=min
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶市物業(yè)服務(wù)合同范本示例
- 保理合同(日元)
- 房屋使用權(quán)合同轉(zhuǎn)租協(xié)議樣本
- 檢測(cè)服務(wù)合同范本:機(jī)構(gòu)合作篇
- 資產(chǎn)配置基金合同例文
- 度標(biāo)準(zhǔn)私人承包協(xié)議合同
- 農(nóng)產(chǎn)品購(gòu)銷合同經(jīng)典合同范文
- 房地產(chǎn)項(xiàng)目苗木采購(gòu)合同書(shū)模板
- 家電配件的表面裝飾與標(biāo)識(shí)技術(shù)考核試卷
- 中介服務(wù)行業(yè)的人力資源服務(wù)標(biāo)準(zhǔn)考核試卷
- DB11 938-2022 綠色建筑設(shè)計(jì)標(biāo)準(zhǔn)
- 部編版語(yǔ)文八年級(jí)下冊(cè)第六單元名著導(dǎo)讀《鋼鐵是怎樣煉成的》問(wèn)答題 (含答案)
- 2022譯林版新教材高一英語(yǔ)必修二單詞表及默寫(xiě)表
- 全國(guó)青少年機(jī)器人技術(shù)等級(jí)考試:二級(jí)培訓(xùn)全套課件
- 九種中醫(yī)體質(zhì)辨識(shí)概述課件
- (外研版)英語(yǔ)四年級(jí)下冊(cè)配套同步練習(xí) (全書(shū)完整版)
- 小學(xué)數(shù)學(xué)計(jì)算能力大賽實(shí)施方案
- 古詩(shī)詞誦讀《虞美人》課件-統(tǒng)編版高中語(yǔ)文必修上冊(cè)
- 文物學(xué)概論-中國(guó)古代青銅器(上)
- 制作拉線課件
- 某物業(yè)公司能力素質(zhì)模型庫(kù)(參考)
評(píng)論
0/150
提交評(píng)論