




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、DBCACABABDCBACBABAAA,Boolean multiplication is equivalent to the AND operation and the basic rules are illustrated with their relation to the AND gates as follows:ADCBACBABA, ,Example:Determine the value of A, B, C, and D which make the sum term Solution:0DCBA0, 0, 0, 0DCBA1, 0, 1, 0DCBA0DCBAExample
2、:Determine the value of A, B, C, and D which make the product term Solution:CDBACBAAB , ,1DCBA1, 1, 1, 1DCBA0, 1, 0, 1DCBA1DCBABAABABBACABBCACBACBA)()()()(ACABCBA)(AA 011 A00 AAA 1AAA1AAAAA0AAAA AABABABAABCACABA)(This law is similar to absorption in that it can be employed to eliminate extra element
3、s from a Boolean expressionBABAAThe dual of distributive lawBCACABA)(BABABAAABAABABAABABAA1)()()(PROOFPROOFBCABCCBAABCACABABCACABAACBAABACABA)()()()(Consensus theoremCAABCBACAABCABBCAABCCAABBCAACAABBCCAAB)()()(PROOFCAABBCCAAB The key to using this theorem is to find a variable and its complement, no
4、te the associated terms, and eliminate the included term (the consensus term), which is composed of the associated terms.Duality theorem(對偶定理): if an expression is valid in Boolean algebra, the dual of the expression is also valid. The dual expression is found by replacing all + operators with , and
5、 operators with +, all 1s with 0s, and all 0s with 1s.The duality theorem will be used extensively in proving Boolean algebra theorems. Example. Find the dual of the expression)(CABABCA Solution. Changing all + operators to , and vice versa, the dual expression isACABCBA)(YXXY(equivalency of the NAN
6、D and negative-OR gates)XYYX YXYX(equivalency of the NOR and negative-AND gates.)YX YXThe gate equivalencies and truth tables for DeMorgans theorems are shown below:The proof is given below:YXXYYXYX,YXXYYXYXYXABBAYXYXBAAAAAXYYXYXYXBAYXYYXXYXYXABYXBYXA1011000)(,ZYXZYXYZXXYZ )(ZYXZYXZYXZYXXYZ,Solution
7、:Example: Apply DeMorgans theorems to each of the following expressions:(a) (b)DCBA)(DEFABC (a) Let A+B+C=X,D=Y:DCBA)(DCBAYXXYCBACBACBADCBA)(DCBA Solution:)( )( )(FEDCBADEFABCDEFABCbExample: Apply DeMorgans theorem to the following expression:)(FEDCBASolution:)( FEDCBAYXYXYXXY) )()( FEDCBA) )()( FED
8、CBA)( FEDCBAA(B+CD)B+CDBDCACDExample: Logic functionstruth tableCBACBAABCEFCDABACDABCDBA)(Example: Convert each of the following Boolean expression to SOP form:CBADCBBAEFCDBAB)c( )()(b( )()a(SolutionBEFBCDABEFCDBAB)()a (BDBCBADACABBDBCBBADACABDCBBA )()(b(CBCACBACBACBA)()c(DCBACDBAABCDCBABCAABCExampl
9、eThe standard SOP form is important in constructing truth table or for Karnaugh map simplification which we will discuss later.Examples: Convert the following Boolean expression into standard SOP form.DCABBACBADCABDDCCBADDCBA)()(DCABDCBADCBADCBACDBADCBACDBASolution)()()()(DCBADCABACBACBACBA)()()()(D
10、CBADCBADCBACBACBACBAC)B)(A(ABCAExample: Convert following Boolean algebra expression into standard POS form.)()(DCBADCBCBASolution)(. 2DCBADCBADCBAADCB)()(. 1DCBADCBA DDCBACBA)()(DCBADCBCBA12)()()()()(DCBADCBA DCBADCBADCBADCBADCBCBADCBA1010DCBAMintermMaxterm10101010Example:m10M6Minterms and Maxterms
11、 for Three Binary Variables iimfiiMfNote: Minterms and maxterms for n variables can converted to each other by applying DeMorgans Theorem. iiMm Example: Determine the truth table for following expression: )()()()(CBACBACBACBACBASolution: InputOutputABCx00000011010001101001101011001111)()()()(CBACBAC
12、BACBACBA000010011101110InputOutputABCx00000010010001111001101011011111Example: From the truth table, determine the standard SOP expression and the equivalent standard POS expression.Sum of minterms expression:Solution:)7 , 6 , 4 , 3(7643 mmmm ABCCABCBABCAXProduct of maxterms expression:),()()(5210 5
13、210MMMMCBACBACBACBAX00000010010001111001101011011111)5 , 2 , 1 , 0()7 , 6 , 4 , 3( XikkiiMmfikkiiiiMMmmmfTheoremProof:Exercise: From the truth table, determine the standard SOP expression and the equivalent standard POS expression.InputOutputABCx00000011010001101001101011001111CCBACBAABCExample: Con
14、vert the following function to a logic diagram, use AND, OR, and NOT gates.ABCCBACBACBAfABABCCBAfExample:ABCBACA )(CABAFBABA) 3(CBABA CBABA)( )4(CBABACBABA)()6(CBABA)(5(BA) 1 (BA)2(CBA)( Example 4-8 Using Boolean algebra, simplify this expression:)()(CBBCBAABXSolution:BACBACABBCBACABBCBACABABBCBBACA
15、BABCBBCBAABX)()(BACABA(B+C)B(B+C)B+CX3 AND,2 OR1 AND,1 ORCABXCBCBCBAACBACBACBACCBACBACBACBADACBACBABDBACBACBABDCBA1)()()0()()(Example:4 AND,2 OR1 ANDABAABAA1. 1AABA. 2AAAAAA. 4BABAA. 3ABAABAA1. 1CDBACDBAFAExampleABAABAABA. 2BCDCBABCAAF)()(DCBABCABCAYXYXAABAExample:BCADCAAC)(BABAA. 3DCDAACFDACAC YXYX
16、BABAAExample:DAC ABCBCABCACBAterms repeated usingAAA AA, 1. 4ABCBCACBAFBCAACCBA)()()()(ABCBCABCACBA1 AAExample:BCBAAAACBAABCCCBABA)()(CBBCBABAF)()()(CBACBABCABCCBABA CBACBABCCBABCABAExample:BCBACBABCBCBACBABCBCAACBACBABCBA)(1 AAExamples:EDCAEDBDECADCBAYCEADBBCBADCACYBACBADCDABAYBACBAYCBABCAYADECADCB
17、AABDYBCACBAY7654321)()()(Solutions:11)()(1) 1(4321BACBABACBAYCCCBABACBABCACBABCAYAADECDCBBDAADECADCBAABDYBCBAABBCCAABBCBCACBAYSolutions:EDCEEBEABEAEDEECBABEAEDCDEECDCBADEAEBEECDCBADADEAECBBEECDCBCCEDABAEAEDEBDBECAEDBECEADBCADBECEAEDBECADCBAEDBEDDCADCBAEDCAEDBDECADCBAYEABCDEBCADECBCADCEBCADCEBBCCEADB
18、BCBAACDCACCEADBBCBADCACYBACBADCDABABACBADCDABAY)()()()()()()()()(0)()(7650mABBABABA3m2m1m0110m1 m2 m3m0 BA011001 10 1100 BABCA1000110110m1 m0 m3 m2 m5 m4 m7 m6 Note: The combination of BC is 00011110 instead of 00011011.CDAB0011011000110110m1 m0 m3 m2 m5 m4 m7 m6 m13 m12 m15 m14 m9 m8 m11 m10 CDAB00
19、11011000110110m1 m0 m3 m2 m5 m4 m7 m6 m13 m12 m15 m14 m9 m8 m11 m10 A=0A=1AB0011011000110110m1 m0 m3 m2 m5 m4 m7 m6 m13 m12 m15 m14 m9 m8 m11 m10 B=0B=0B=100110110CDAB0011011000110110m1 m0 m3 m2 m5 m4 m7 m6 m13 m12 m15 m14 m9 m8 m11 m10 D=1AB00110110m1 m0 m3 m2 m5 m4 m7 m6 m13 m12 m15 m14 m9 m8 m11
20、m10 C=1CDEAB00110110m1 m0 m3 m2 m9 m8 m11 m10 m25 m24 m27 m26 m17 m16 m19 m18 000011001010100111101110m7 m6 m5 m4 m15 m14 m13 m12 m31 m30 m29 m28 m23 m22 m21 m20 CDAB0011011000110110m1 m0 m3 m2 m5 m4 m7 m6 m13 m12 m15 m14 m9 m8 m11 m10 m5 m0 CBACABCBACBAXBCA1000110110m1 m0 m3 m2 m5 m4 m7 m6 0001 001
21、1 1101001 1 ExampleDCBADCBADCAB ABCDDCABDCBACDBAF0011010111011111110000011010CDAB00110110001101101 1 1 1 1 1 1 CABBAAX000001010011100101010 110BCA1000110110m1 m0 m3 m2 m5 m4 m7 m6 1 1 1 1 1 1 1 ExampleExercise: Plot the following expression on a Karnaugh map.)(DCBACDAB00110110001101101 1 1 1 1 1 1 1
22、 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-variable Karnaugh map1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 11 1 1 1 11 1 1 1 1 1 1 11 1 1 111 1 11 1 11 1 1 1 1 1 11Example1 1 1 1 1 1 11 1 1 CDAB00110110001101101 Two 1s:DCAFour 1s:CA Eight 1s:BBCADCAF 1 ABBCFBCACABABCCBAF
23、ABBCBCA0011011011 110100111110011 1 ABBCF)7 , 6 , 4 , 3(),(7643mmmmFABBCBCA0011011011 110BCACABABCCBAF100111110011CDAB00110110001101101 0 3 2 5 4 7 6 13 12 15 149 8 11 10 Example)14,12,11,10, 8 , 6 , 4 , 3 , 2 , 0(F1 1 1 1 1 1 1 1 1 1 CDAB0011011000110110DCBCBDFExampleInputsOutputABCDY00000000100010
24、000110010000101001100011111000110011101010111100110111101111BCDcode0123456789CDCDABAB00001111010110100000111101011010 1 1 1 1 1 1 CBABCDAABCD Without “dont care” terms With “dont care” termsBCDACBAYBCDAY1110000000000000111100001100110010101010FDCBA1111111111111100001100110010101010FDCBA1) Truth table2) Karnaugh mapCDCDABAB00001111010110100000111101011010 1 1 1 11 1 1 1 1 1 ABDBCBDBCAF)()()(CBACBACBACBAYBCA100
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年網(wǎng)絡(luò)管理員考試學(xué)習(xí)方向試題
- 學(xué)科交叉與綜合課程設(shè)計計劃
- 幼兒園語言學(xué)習(xí)活動策劃計劃
- 精細化管理與戰(zhàn)略風(fēng)險防范試題及答案
- 2025年軟件設(shè)計師復(fù)習(xí)計劃與試題及答案
- 持續(xù)學(xué)習(xí)的個人工作目標(biāo)計劃
- 2025年時事政治熱點題庫考試試題庫(歷年真題)附答案詳解
- 職業(yè)選擇與個人價值的關(guān)系-高考作文考試試題及答案
- 自動化對2025年公司戰(zhàn)略的推動及試題及答案
- 行政管理理性決策試題及答案探討
- 新高考人教版高中化學(xué)必修一全套課件
- 做一名幸福教師專題培訓(xùn)課件
- GHS化學(xué)品(含危險品)標(biāo)簽標(biāo)志與象形符號
- 三級醫(yī)院評審標(biāo)準(zhǔn)(2023年版)實施細則
- GA/T 2002-2022多道心理測試通用技術(shù)規(guī)程
- JJF 1973-2022 移動生物檢測實驗艙性能參數(shù)校準(zhǔn)規(guī)范
- 弟子規(guī)余力學(xué)文
- 物理學(xué)家-焦耳
- 小學(xué)低年級語文學(xué)困生成因分析及轉(zhuǎn)化策略研究文檔
- 雕刻機畢業(yè)設(shè)計外文文獻翻譯
- GB/T 8814-2004門、窗用未增塑聚氯乙烯(PVC-U)型材
評論
0/150
提交評論