版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1)()(0XjEdxjxxfddXXdxexfxfXxjXXX)()(:),(其特征函數(shù)為的概率密度為設(shè)隨機(jī)變量dxejxxfdxeddxfddxjXxjXX)()()(2)()(0nnnXnXnXEjdxjxxfdd)(0XjEddX0)(ddjXEX0)()(nXnnnddjXEdxejxxfddxjnXnXn)()(3nnxxxfnxxxfxxxfxfxf)(!1)( 21)( )()(00)(200000nnxfnxfxffxf)0(!1)0( 21)0( )0()()(200 xnnXXXXXn)0(!1)0(21)0()0()()(2 !)(!)()(000njXEnddnnnn
2、nXnnX400)(ln)()()(XnnnXnnnnddjddjc階累積量的nX!)()(0njXEnnnX000!)(!)()(ln)(nnnnnXnnXXnjcndd5.22 . 1和各階累積量的各階矩變量求數(shù)學(xué)期望為零的高斯例X22221)(xXexf2222222eeFTt0)()(022022ejddjXEX202222202222)()()(2222eeddjXEX222222221)()(eexfFTXX)(X6為奇數(shù)為偶數(shù)nnnXEnn0) 1(5310)()(Xnnnnddjc2)(ln)(22XX222)(eX0)(0201jddjcX20202222)()(Xddjc)
3、2(0ncn7.,01)(的隨機(jī)變量區(qū)間內(nèi)均勻分布為在則稱其它的概率密度滿足如果隨機(jī)變量baXbxaabxfXX8bxbxaabaxaxxF10)(:概率分布函數(shù)為12)(,222abbam其它01)(bxaabxfX9222)(21)(:mxXexfX的概率密度為變量一維高斯分布的隨機(jī)10mXY:處理對(duì)高斯變量進(jìn)行歸一化222)(21)(mxXexf11之間的相關(guān)系數(shù)與是為其數(shù)學(xué)期望和方差分別也是高斯變量則和其數(shù)學(xué)期望和方差為為高斯變量若jiijjijiijniiYniiYniiiiiXXrrmmYXYmX2:,122112niiYiX122:,則上面的方差應(yīng)修正為之間是互相獨(dú)立的若1222
4、)(:eYY的特征函數(shù)為歸一化高斯變量222)()(mjYmjXeemYXmXY13)()(2)()1(21221212221212122222212211212112121),(:,mxmxmxrmxrXerxxfmmXX它們的聯(lián)合概率密度為和為方差分別和數(shù)學(xué)期望分別為和兩個(gè)高斯變量)()(212121212122222212112121)()(),(:,mxmxXXXexfxfxxfXX則上式簡化為是互相獨(dú)立的和若142212222111221222212121,nnnnnnnnCCCCCCCsmmmmXXXX)()(211)2(1)(mxCmxnXTeCxf15三、 分布2.:,2122
5、21分布個(gè)自由度的服從則其平方和方差均為個(gè)互相獨(dú)立的高斯變量nXYXXXnniin.,2分布為中心稱均為零個(gè)高斯變量的數(shù)學(xué)期望若Yn0)2()2(1)(221222yeynyfynnY164222nnmYYY的數(shù)學(xué)期望和方差為:01)(dtetxtx1) 1 (22221)(,2yYeyfYn為指數(shù)分布時(shí)0)2()2(1)(221222yeynyfynnY17.,122稱做非中心分布參量分布非中心為稱不為零而是個(gè)高斯變量的數(shù)學(xué)期望若niiimYmn0)()(21)(21224222yyIeyyfnynY階修正貝塞爾函數(shù)nmnmxxImmnn02) 1(!)2()(242242nnmYY18 分
6、布的一條重要的性質(zhì)2.,;,)()(21212212122分布參量為其和的非中心和心分布參量分別為若非中分布對(duì)于非中心為其和的自由度和們的自由度分別為若它分布中心非隨機(jī)變量之和仍為分布的中心非兩個(gè)互相獨(dú)立的具有nnnnn19.,; 0)(:,222222122122稱為廣義瑞利分布則分布自由度的中心個(gè)為若其概率密度為服從瑞利分布則的高斯變量且互相獨(dú)立方差為是數(shù)學(xué)期望為零若RnYrerrfXXYRXXrR分布即指數(shù)分布服從兩個(gè)自由度的中心2Y20.,), 2 , 1(212則是萊斯分布而分布是非中心不為零時(shí)的數(shù)學(xué)期望當(dāng)高斯變量YRXYmniXniiii0)()(212222222rrIerrfn
7、rnnR2113 . 1表37P2223chi2statchi2cdfchi2pdfchi2rnd 分布分布raylstatraylcdfraylpdfraylrnd瑞利分布瑞利分布normstatnormcdfnormpdfnormrnd正態(tài)分布正態(tài)分布expstatexpcdfexppdfexprnd指數(shù)分布指數(shù)分布unifstatunifcdfunifpdfunifrnd均勻分布均勻分布unidstatunidcdfunidpdfunidrnd離散均勻分布離散均勻分布poissstatpoisscdfpoisspdfpoissrnd泊松分布泊松分布binostatbinocdfbinop
8、dfbinornd二項(xiàng)分布二項(xiàng)分布均值與方差均值與方差概率分布函數(shù)值概率分布函數(shù)值概率密度函數(shù)值概率密度函數(shù)值產(chǎn)生隨機(jī)數(shù)產(chǎn)生隨機(jī)數(shù)分布名稱分布名稱218196表P24clearx=randn(1,6); y=normrnd(2,sqrt(0.5),1,6); mx=mean(x); my=mean(y); vx=cov(x); vy=cov(y); sdx=std(x); sdy=std(y); r=corrcoef(x,y); disp(N(0,1)隨機(jī)數(shù)隨機(jī)數(shù)x,均值均值,方差方差,標(biāo)準(zhǔn)差標(biāo)準(zhǔn)差)disp(x),disp(mx),disp(vx),disp(sdx)disp(N(2,0.5)隨機(jī)數(shù)隨機(jī)數(shù)y,均值均
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024項(xiàng)目融資合同協(xié)議書
- 2025年度中醫(yī)食療研究與推廣合同4篇
- 2025年度特色餐飲連鎖品牌授權(quán)合同3篇
- 2025年度生態(tài)修復(fù)工程承包商借款合同范本4篇
- 2025年度數(shù)據(jù)中心運(yùn)維外包合同4篇
- 2025年度體育用品代理服務(wù)合同模板4篇
- 2025年度物流車輛環(huán)保排放檢測合同4篇
- 2025年度人工智能技術(shù)應(yīng)用與開發(fā)合同2篇
- 2024版全新銷售擔(dān)保合同范本下載
- 2025年度新能源汽車充電站車位銷售與管理協(xié)議4篇
- 專升本英語閱讀理解50篇
- 施工單位值班人員安全交底和要求
- 中國保險(xiǎn)用戶需求趨勢洞察報(bào)告
- 數(shù)字化轉(zhuǎn)型指南 星展銀行如何成為“全球最佳銀行”
- 中餐烹飪技法大全
- 靈芝孢子油減毒作用課件
- 現(xiàn)場工藝紀(jì)律檢查表
- 醫(yī)院品管圈與護(hù)理質(zhì)量持續(xù)改進(jìn)PDCA案例降低ICU病人失禁性皮炎發(fā)生率
- 新型電力系統(tǒng)研究
- 烘干廠股東合作協(xié)議書
- 法院服務(wù)外包投標(biāo)方案(技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論