應(yīng)用回歸分析第四版課后習(xí)題答案_全_何曉群_劉文卿_第1頁(yè)
應(yīng)用回歸分析第四版課后習(xí)題答案_全_何曉群_劉文卿_第2頁(yè)
應(yīng)用回歸分析第四版課后習(xí)題答案_全_何曉群_劉文卿_第3頁(yè)
應(yīng)用回歸分析第四版課后習(xí)題答案_全_何曉群_劉文卿_第4頁(yè)
應(yīng)用回歸分析第四版課后習(xí)題答案_全_何曉群_劉文卿_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選文檔實(shí)用回歸分析第四版第一章 回歸分析概述1.3 回歸模型中隨機(jī)誤差項(xiàng)的意義是什么?答:為隨機(jī)誤差項(xiàng),正是由于隨機(jī)誤差項(xiàng)的引入,才將變量間的關(guān)系描述為一個(gè)隨機(jī)方程,使得我們可以借助隨機(jī)數(shù)學(xué)方法研究y與x1,x2.xp的關(guān)系,由于客觀經(jīng)濟(jì)現(xiàn)象是錯(cuò)綜復(fù)雜的,一種經(jīng)濟(jì)現(xiàn)象很難用有限個(gè)因素來準(zhǔn)確說明,隨機(jī)誤差項(xiàng)可以概括表示由于人們的認(rèn)識(shí)以及其他客觀原因的局限而沒有考慮的種種偶然因素。1.4 線性回歸模型的基本假設(shè)是什么?答:線性回歸模型的基本假設(shè)有:1.解釋變量x1.x2.xp是非隨機(jī)的,觀測(cè)值xi1.xi2.xip是常數(shù)。2.等方差及不相關(guān)的假定條件為E(i)=0 i=1,2. Cov(i,j)

2、=23.正態(tài)分布的假定條件為相互獨(dú)立。4.樣本容量的個(gè)數(shù)要多于解釋變量的個(gè)數(shù),即n>p.第二章 一元線性回歸分析思考與練習(xí)參考答案 2.1 一元線性回歸有哪些基本假定?答: 假設(shè)1、解釋變量X是確定性變量,Y是隨機(jī)變量; 假設(shè)2、隨機(jī)誤差項(xiàng)具有零均值、同方差和不序列相關(guān)性: E(i)=0 i=1,2, ,n Var (i)=s2 i=1,2, ,n Cov(i, j)=0 ij i,j= 1,2, ,n 假設(shè)3、隨機(jī)誤差項(xiàng)與解釋變量X之間不相關(guān): Cov(Xi, i)=0 i=1,2, ,n 假設(shè)4、服從零均值、同方差、零協(xié)方差的正態(tài)分布 iN(0, s2 ) i=1,2, ,n2.3

3、證明(2.27式),Sei =0 ,SeiXi=0 。證明:其中:即: Sei =0 ,SeiXi=02.5 證明是0的無偏估計(jì)。證明:2.6 證明證明:2.7 證明平方和分解公式:SST=SSE+SSR證明:2.8 驗(yàn)證三種檢驗(yàn)的關(guān)系,即驗(yàn)證:(1);(2)證明:(1)(2)2.9 驗(yàn)證(2.63)式:證明:其中:2.10 用第9題證明是s2的無偏估計(jì)量證明:第三章1.一個(gè)回歸方程的復(fù)相關(guān)系數(shù)R=0.99,樣本決定系數(shù)R2=0.9801,我們能判斷這個(gè)回歸方程就很理想嗎?答:不能斷定這個(gè)回歸方程理想。因?yàn)椋?. 在樣本容量較少,變量個(gè)數(shù)較大時(shí),決定系數(shù)的值容易接近1,而此時(shí)可能F檢驗(yàn)或者關(guān)于

4、回歸系數(shù)的t檢驗(yàn),所建立的回歸方程都沒能通過。2. 樣本決定系數(shù)和復(fù)相關(guān)系數(shù)接近于1只能說明Y與自變量X1,X2,Xp整體上的線性關(guān)系成立,而不能判斷回歸方程和每個(gè)自變量是顯著的,還需進(jìn)行F檢驗(yàn)和t檢驗(yàn)。3. 在應(yīng)用過程中發(fā)現(xiàn),在樣本容量一定的情況下,如果在模型中增加解釋變量必定使得自由度減少,使得 R2往往增大,因此增加解釋變量(尤其是不顯著的解釋變量)個(gè)數(shù)引起的R2的增大與擬合好壞無關(guān)。2.被解釋變量的期望值與解釋變量的線性方程為: (3-2)稱為多元總體線性回歸方程,簡(jiǎn)稱總體回歸方程。對(duì)于組觀測(cè)值,其方程組形式為: (3-3)即其矩陣形式為=+即 (3-4)其中為被解釋變量的觀測(cè)值向量;

5、為解釋變量的觀測(cè)值矩陣;為總體回歸參數(shù)向量;為隨機(jī)誤差項(xiàng)向量。多元回歸線性模型基本假定:課本P57第四章4.3 簡(jiǎn)述用加權(quán)最小二乘法消除一元線性回歸中異方差性的思想與方法。答:普通最小二乘估計(jì)就是尋找參數(shù)的估計(jì)值使離差平方和達(dá)極小。其中每個(gè)平方項(xiàng)的權(quán)數(shù)相同,是普通最小二乘回歸參數(shù)估計(jì)方法。在誤差項(xiàng)等方差不相關(guān)的條件下,普通最小二乘估計(jì)是回歸參數(shù)的最小方差線性無偏估計(jì)。然而在異方差的條件下,平方和中的每一項(xiàng)的地位是不相同的,誤差項(xiàng)的方差大的項(xiàng),在殘差平方和中的取值就偏大,作用就大,因而普通最小二乘估計(jì)的回歸線就被拉向方差大的項(xiàng),方差大的項(xiàng)的擬合程度就好,而方差小的項(xiàng)的擬合程度就差。由OLS求出的

6、仍然是的無偏估計(jì),但不再是最小方差線性無偏估計(jì)。所以就是:對(duì)較大的殘差平方賦予較小的權(quán)數(shù),對(duì)較小的殘差平方賦予較大的權(quán)數(shù)。這樣對(duì)殘差所提供信息的重要程度作一番校正,以提高參數(shù)估計(jì)的精度。加權(quán)最小二乘法的方法:4.4簡(jiǎn)述用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與方法。答:運(yùn)用加權(quán)最小二乘法消除多元線性回歸中異方差性的思想與一元線性回歸的類似。多元線性回歸加權(quán)最小二乘法是在平方和中加入一個(gè)適當(dāng)?shù)臋?quán)數(shù) ,以調(diào)整各項(xiàng)在平方和中的作用,加權(quán)最小二乘的離差平方和為: (2)加權(quán)最小二乘估計(jì)就是尋找參數(shù)的估計(jì)值使式(2)的離差平方和達(dá)極小。所得加權(quán)最小二乘經(jīng)驗(yàn)回歸方程記做 (3) 多元回歸模型加權(quán)最

7、小二乘法的方法:首先找到權(quán)數(shù),理論上最優(yōu)的權(quán)數(shù)為誤差項(xiàng)方差的倒數(shù),即 (4)誤差項(xiàng)方差大的項(xiàng)接受小的權(quán)數(shù),以降低其在式(2)平方和中的作用; 誤差項(xiàng)方差小的項(xiàng)接受大的權(quán)數(shù),以提高其在平方和中的作用。由(2)式求出的加權(quán)最小二乘估計(jì)就是參數(shù)的最小方差線性無偏估計(jì)。一個(gè)需要解決的問題是誤差項(xiàng)的方差是未知的,因此無法真正按照式(4)選取權(quán)數(shù)。在實(shí)際問題中誤差項(xiàng)方差通常與自變量的水平有關(guān)(如誤差項(xiàng)方差隨著自變量的增大而增大),可以利用這種關(guān)系確定權(quán)數(shù)。例如與第j個(gè)自變量取值的平方成比例時(shí), 即=k時(shí),這時(shí)取權(quán)數(shù)為 (5)更一般的情況是誤差項(xiàng)方差與某個(gè)自變量(與|ei|的等級(jí)相關(guān)系數(shù)最大的自變量)取值的

8、冪函數(shù)成比例,即=k,其中m是待定的未知參數(shù)。此時(shí)權(quán)數(shù)為 (6)這時(shí)確定權(quán)數(shù) 的問題轉(zhuǎn)化為確定冪參數(shù)m的問題,可以借助SPSS軟件解決。第五章5.3 如果所建模型主要用于預(yù)測(cè),應(yīng)該用哪個(gè)準(zhǔn)則來衡量回歸方程的優(yōu)劣?答:如果所建模型主要用于預(yù)測(cè),則應(yīng)使用統(tǒng)計(jì)量達(dá)到最小的準(zhǔn)則來衡量回歸方程的優(yōu)劣。5.4 試述前進(jìn)法的思想方法。答:前進(jìn)法的基本思想方法是:首先因變量Y對(duì)全部的自變量x1,x2,.,xm建立m個(gè)一元線性回歸方程, 并計(jì)算F檢驗(yàn)值,選擇偏回歸平方和顯著的變量(F值最大且大于臨界值)進(jìn)入回歸方程。每一步只引入一個(gè)變量,同時(shí)建立m1個(gè)二元線性回歸方程,計(jì)算它們的F檢驗(yàn)值,選擇偏回歸平方和顯著的

9、兩變量變量(F值最大且大于臨界值)進(jìn)入回歸方程。在確定引入的兩個(gè)自變量以后,再引入一個(gè)變量,建立m2個(gè)三元線性回歸方程,計(jì)算它們的F檢驗(yàn)值,選擇偏回歸平方和顯著的三個(gè)變量(F值最大)進(jìn)入回歸方程。不斷重復(fù)這一過程,直到無法再引入新的自變量時(shí),即所有未被引入的自變量的F檢驗(yàn)值均小于F檢驗(yàn)臨界值F(1,n-p-1),回歸過程結(jié)束。5.5 試述后退法的思想方法。答:后退法的基本思想是:首先因變量Y對(duì)全部的自變量x1,x2,.,xm建立一個(gè)m元線性回歸方程, 并計(jì)算t檢驗(yàn)值和F檢驗(yàn)值,選擇最不顯著(P值最大且大于臨界值)的偏回歸系數(shù)的自變量剔除出回歸方程。每一步只剔除一個(gè)變量,再建立m1元線性回歸方程

10、,計(jì)算t檢驗(yàn)值和F檢驗(yàn)值,剔除偏回歸系數(shù)的t檢驗(yàn)值最?。≒值最大)的自變量,再建立新的回歸方程。不斷重復(fù)這一過程,直到無法剔除自變量時(shí),即所有剩余p個(gè)自變量的F檢驗(yàn)值均大于F檢驗(yàn)臨界值F(1,n-p-1),回歸過程結(jié)束。第六章消除多重共線性的方法7.2嶺回歸的定義及統(tǒng)計(jì)思想是什么?答:嶺回歸法就是以引入偏誤為代價(jià)減小參數(shù)估計(jì)量的方差的一種回歸方法,其統(tǒng)計(jì)思想是對(duì)于(XX)-1為奇異時(shí),給XX加上一個(gè)正常數(shù)矩陣D, 那么XX+D接近奇異的程度就會(huì)比XX接近奇異的程度小得多,從而完成回歸。但是這樣的回歸必定丟失了信息,不滿足blue。但這樣的代價(jià)有時(shí)是值得的,因?yàn)檫@樣可以獲得與專業(yè)知識(shí)相一致的結(jié)果。7.3 選擇嶺參數(shù)k有哪幾種方法?答:最優(yōu)是依賴于未知參數(shù)和的,幾種常見的選擇方法是: 嶺跡法:選擇的點(diǎn)能使各嶺估計(jì)基本穩(wěn)定,嶺估計(jì)符號(hào)合理,回歸系數(shù)沒有不合乎經(jīng)濟(jì)意義的絕對(duì)值,且殘差平方和增大不太多;方差擴(kuò)大因子法:,其對(duì)角線元是嶺估計(jì)的方差擴(kuò)大因子。要讓;殘差平方和:滿足成立的最大的值。7.4 用嶺回歸方法選擇自變量應(yīng)遵循哪些基本原則?答:嶺回歸選擇變量通常的原則是:1. 在嶺回歸的計(jì)算中,我們通常假定涉及矩陣已經(jīng)中心化和標(biāo)準(zhǔn)化了,這樣可以直接比較標(biāo)準(zhǔn)化嶺回歸系數(shù)的大小。我們可以剔除掉標(biāo)準(zhǔn)化嶺回歸系數(shù)比較穩(wěn)定且絕對(duì)值很小的自變量;2. 當(dāng)k值較小時(shí),標(biāo)準(zhǔn)化嶺回歸系數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論