




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、 第 23 期 彭文季等: 基于最小二乘支持向量機和信息融合技術的水電機組振動故障診斷 究J西安交通大學學 報,2002,36(12:1303-1306 91 diagnose the fault of unbalance of rotator, but its confidence (only 0.66 is lower than the SVM, and this shows that the generalization of BP network is weaker than the SVM. Tab. 7 F1 0.6617 Zhang Zhousuo, Li Lingjun, He
2、 Zhengji Research on diagnosis method of machinery fault based on support vector machineJ Journal of Xian Jiaotong University,2002,36(12:1303-1306(in Chinese 6 Poyhonen S,Negrea M,Arkkio AFault diagnostics of an electrical machine with multiple support vector classifiersCProceedings of 2002 IEEE Int
3、ernational Symposium on Intelligent Control. Vancouver,2002 7 Chih-Wei H,Chih-Jen LA comparison of methods for multi- class support vector machinesJIEEE Transon Neural Networks,2002, 13(2:415-425 8 尉詢楷,陸波,汪誠,等支持向量機在航空發(fā)動機故障診斷中的 應用J航空動力學報,2004,19(6:844-848 Wei Xunkai, LU Cheng, Wang Cheng, Lu Jianming
4、, et al Applications of support vector machines to aeroengine fault diagnosisJ Journal of Aerospace Power,2004,19(6:844-848(in Chinese 9 翟永杰,韓 璞,王東風,等基于損失函數(shù)的 SVM 算法及其在 輕微故障診斷中的應用 J 中國電機工程學報, 2005 , 25(9 : 198-203 Zhai Yongjie, Han Pu, Wang Dongfeng, et al Risk function based SVM algorithm and its ap
5、plication to slight malfunction diagnosis JProceedings of the CSEE,2005,25(9:198-203(in Chinese 10 何學文,趙海鳴支持向量機及其在機械故障診斷中的應用J中 南大學學報(自然科學版,2005,36(1:97-101 He Xuewen, Zhao Haiming Support vector machine and its application to machinery fault diagnosisJJ Cent South Univ(Science and Technology,2005,36
6、 (1:97-101(in Chinese 11 鄧慧瓊,艾欣,劉昊基于支持向量機的電力系統(tǒng)連鎖故障評估方 法研究J中國電機工程學報,2005,25(25:178-183 Deng Huiqiong,Ai Xin,Liu HaoPower system cascading outages assessment based on support vector machineJProceedings of the CSEE,2005,25(25:178-183(in Chinese 12 孫斌,周云龍基于支持向量機和小波包能量特征的氣液兩相流流 型識別方法J中國電機工程學報,2005,25(17:
7、93-99 Sun Bin,Zhou YunlongIdentification method of gas-liquid two-phase flow regime based on support vector machine and packet energe featureJ Proceedings of the CSEE, 2005, 25(17: 93-99(in Chinese 13 徐啟華,師軍基于支持向量機的航空發(fā)動機故障診斷J航空動 力學報,2005,20(2:298-302 Xu Qihua, Shi Jun Aero-engine fault diagnosis bas
8、ed on support vector machineJJournal of Aerospace Power,2005,20(2:298-302(in Chinese 14 劉涵,李琦,劉丁,等基于最小二乘支持向量機的電站鍋爐空預 器熱點檢測系統(tǒng)研究J 中國電機工程學報, 2005, 25(3: 146-152 Liu Han,Li Qi; Liu Ding,Liang Yanming,et alResearch on power plant boiler air preheater hot spots detection system based on LS-SVMJ Proceeding
9、s of the CSEE , 2005 , 25(3 : 146-152(in Chinese 15 閻威武,??×?,邵惠鶴基于滾動時間窗的最小二乘支持向量機 回歸估計方法及仿真J 上海交通大學學報, 2004, 38(4: 521-524 Yan Weiwu,Chang Junlin,Shao HuiheLeast square SVM regression method based on sliding time window and its simulationJ Journal of Shanghai Jiaotong University,2004,38(4:521-524(in
10、Chinese 16 楊曉萍,南海鵬,張江濱信息融合技術在水輪發(fā)電機組故障診斷 中的應用J水力發(fā)電學報,2004,23(6:111-115 Yang Xiaoping , Nan Haipeng , Zhang Jiangbin Application of 表 7 神經(jīng)網(wǎng)絡診斷結果 Diagnosis conclusion of neural network F2 0.2832 F3 0.1153 F4 0.0822 F5 0.0416 5 CONCLUSIONS (1) By applying LS-SVM to the fault diagnosis of hydropower gene
11、rating unit, the results showed that the SVM generalization is powerful in small samples, especially to acquire fault samples are difficult in fault diagnosis of hydropower generating unit. (2)Use SVR to initial diagnosis and then use the initial result to decision fusion based on D-S theory. It can
12、 be achieved that the weaker diagnostic decision effects support stronger diagnostic decision, and the diversity problems of actual engineering also can be solved. ( 3 ) The fault diagnosis of hydropower generating unit can be achieved fast and availably owing to the effective combination of LS-SVM
13、and D-S theory. REFERENCES 1 虞和濟,陳長征,張省基于神經(jīng)網(wǎng)絡的智能診斷J振動工程學 報,2000,13(2:202-209 Yu Heji,Chen Changzheng,Zhang ShengIntelligent diagnosis based on neural networksJ Journal of vibration engineering, 2000, 13(2: 202-209(in Chinese 2 陳長征,栗青,劉一芳,等汽輪發(fā)電機組故障智能診斷方法研究 J中國電機工程學報,2002,22(5:121-124 Chen Changzheng,
14、 Li Qing, Liu Yifang, et al Intelligent fault diagnosis method for turbo-generator unitJProceedings of the CSEE,2002, 22(5:121-124(in Chinese 3 符向前,劉光臨,蔣勁BP 神經(jīng)網(wǎng)絡在水輪發(fā)電機組狀態(tài)監(jiān)測與 診斷系統(tǒng)中的應用J武漢大學學報,2002,35(1:24-28 Fu Xiangqian,Liu Guangling,Jiang jinApplication of BP neural networks to condition monitoring
15、and fault diagnosis system of hydro-generator unitsJ Journal of Wuhan University (Engineering, 2002,35(1:24-28(in Chinese 4 賈嶸,白亮,羅興锜,等基于神經(jīng)網(wǎng)絡的水輪發(fā)電機組振動故障 診斷專家系統(tǒng)J水力發(fā)電學報,2004,23(6:120-123 Jia Rong, Bai Liang, Luo Xingqi, et al Expert system on fault diagnosis based on neural network for hydropower unit
16、sJ Journal of Hydroelectric Engineering,2004,23(6:120-123(in Chinese 5 張周鎖,李凌均,何正嘉基于支持向量機的機械故障診斷方法研 92 中 國 電 機 工 程 學 報 第 27 卷 information fusion technology on fault diagnosis of hydropower generating unitJ Journal of Hydroelectric Engineering, 2004, 23(6: 111-115(in Chinese 17 蔡興國,馬平基于信息融合技術的并發(fā)故障診斷的
17、研究J中國 電機工程學報,2004,24(10:238-243 Cai Xingguo,Ma PingStudy on simultaneous fault diagnosis based information fusion techniqueJProceedings of the CSEE,2004, 24(10:238-243 18 尚勇,閆春江,嚴璋,等基于信息融合的大型油浸電力變壓器故 障診斷J中國電機工程學報,2002,22(7:115-118 Shang Yong,Yan Chunjiang,Yan Zhang,et alSynthetic insulation fault di
18、agnostic model of oil-immersed power transformers utilizing information fusionJ Proceedings of the CSEE, 2002, 22(7: 115-118 19 趙道利,馬 薇,梁武科,等水電機組振動故障的信息融合診斷 與仿真研究J中國電機工程學報,2005,25(20:137-142 Zhao Daoli, Ma Wei, Liang Wuke, et al On data fusion fault diagnosis and simulation of hydro-power units vibrationJProceedings of the CSEE,2005,25(20:137-142 20 李郁俠,劉立峰,陳繼堯,等基于神經(jīng)網(wǎng)絡和證據(jù)理論融合的水 電機組振動故障診斷研究J 西北農(nóng)林科技大學學報(自然科學版, 2005,33(10:115-119 Li Yuxia,Liu Lifeng,Chen Jiyao,et alResearch on fault di
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司內(nèi)部管理與行為準則規(guī)定
- 跨部門溝通協(xié)作的往來文書規(guī)范
- 項目季度工作計劃與目標分解報告
- 環(huán)境影響評價操作流程與規(guī)范手冊
- 互聯(lián)網(wǎng)營銷策略實戰(zhàn)指南
- 保鮮庫工程承攬合同
- 多分辨率圖像加載效率規(guī)則
- 南充市高2025屆高三高考適應性考試(二診)生物試卷(含答案)
- 醫(yī)藥公司勞動合同
- 2025年巴音郭楞貨運從業(yè)資格證考試題庫a2
- 2輸變電工程施工質(zhì)量驗收統(tǒng)一表式(變電工程土建專業(yè))-2024年版
- QCT457-2023救護車技術規(guī)范
- 【23精品】蘇少小學美術三下教案全冊
- 房屋租賃(出租)家私清單
- 計算機技術碩士專業(yè)學位授權點申報研究演示課件(PPT 39頁)
- 剪紙藝術-認識剪紙
- 駕駛員違規(guī)違章學習記錄表
- 簡易瞬態(tài)工況法1
- 中國鐵路總公司環(huán)境保護管理辦法(鐵總計統(tǒng)〔2015〕260號)
- 技術分析介紹教程課件
- 汽車新能源汽車產(chǎn)業(yè)專利趨勢分析
評論
0/150
提交評論