配方法解一元二次方程_第1頁(yè)
配方法解一元二次方程_第2頁(yè)
配方法解一元二次方程_第3頁(yè)
配方法解一元二次方程_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、22.2.3一元二次方程的解法教學(xué)目標(biāo):1、掌握用配方法解數(shù)字系數(shù)的一元二次方程2、使學(xué)生掌握配方法的推導(dǎo)過(guò)程,熟練地用配方法解一元二次方程。3在配方法的應(yīng)用過(guò)程中體會(huì) “轉(zhuǎn)化”的思想,掌握一些轉(zhuǎn)化的技能。重點(diǎn)難點(diǎn): 使學(xué)生掌握配方法,解一元二次方程。把一元二次方程轉(zhuǎn)化為教學(xué)過(guò)程:一、復(fù)習(xí)提問(wèn)解下列方程,并說(shuō)明解法的依據(jù): (1) (2) (3) 通過(guò)復(fù)習(xí)提問(wèn),指出這三個(gè)方程都可以轉(zhuǎn)化為以下兩個(gè)類型:根據(jù)平方根的意義,均可用“直接開(kāi)平方法”來(lái)解,如果b < 0,方程就沒(méi)有實(shí)數(shù)解。如請(qǐng)說(shuō)出完全平方公式。 。二、引入新課我們知道,形如的方程,可變形為,再根據(jù)平方根的意義,用直接開(kāi)平方法求解那

2、么,我們能否將形如的一類方程,化為上述形式求解呢?這正是我們這節(jié)課要解決的問(wèn)題三、探索:1、例1、解下列方程:2x5; (2)4x30.思考能否經(jīng)過(guò)適當(dāng)變形,將它們轉(zhuǎn)化為 = a 的形式,應(yīng)用直接開(kāi)方法求解?解(1)原方程化為2x16, (方程兩邊同時(shí)加上1)_,_,_.(2)原方程化為4x434 (方程兩邊同時(shí)加上4)_,_,_.三、歸納上面,我們把方程4x30變形為1,它的左邊是一個(gè)含有未知數(shù)的完全平方式,右邊是一個(gè)非負(fù)常數(shù).這樣,就能應(yīng)用直接開(kāi)平方的方法求解.這種解一元二次方程的方法叫做配方法.注意到第一步在方程兩邊同時(shí)加上了一個(gè)數(shù)后,左邊可以用完全平方公式從而轉(zhuǎn)化為用直接開(kāi)平方法求解。

3、那么,在方程兩邊同時(shí)加上的這個(gè)數(shù)有什么規(guī)律呢?四、試一試:對(duì)下列各式進(jìn)行配方:; ; ;通過(guò)練習(xí),使學(xué)生認(rèn)識(shí)到;配方的關(guān)鍵是在方程兩邊同時(shí)添加的常數(shù)項(xiàng)等于一次項(xiàng)系數(shù)一半的平方。五、例題講解與練習(xí)鞏固1、例2、 用配方法解下列方程:(1)6x70; (2)3x10.2、練習(xí):.填空:(1) (2)8x( )(x- )2(3)x( )(x )2; (4)46x( )4(x )2 用配方法解方程:(1)8x20 (2)5 x60. (3) 六、試一試用配方法解方程x2pxq0(p24q0).先由學(xué)生討論探索,教師再板書(shū)講解。解:移項(xiàng),得 x2pxq,配方,得 x22·x·()2(

4、)2q,即 (x) 2.因?yàn)?p24q0時(shí),直接開(kāi)平方,得 x±.所以 x-±,即 x.思 考:這里為什么要規(guī)定p24q0?七、討 論1、如何用配方法解下列方程?4x212x10; 請(qǐng)你和同學(xué)討論一下:當(dāng)二次項(xiàng)系數(shù)不為1時(shí),如何應(yīng)用配方法?2、關(guān)鍵是把當(dāng)二次項(xiàng)系數(shù)不為1的一元二次方程轉(zhuǎn)化為二次項(xiàng)系數(shù)為1的一元二次方程。先由學(xué)生討論探索,再教師板書(shū)講解。解:(1)將方程兩邊同時(shí)除以4,得 x23x0移項(xiàng),得 x23x配方,得 x23x+()2+()2即 (x) 2直接開(kāi)平方,得 x±所以 x±所以x1,x2=3,練習(xí):用配方法解方程: (1) (2)3x22x30. (3) (原方程無(wú)實(shí)數(shù)解)本課小結(jié):讓學(xué)生反思本節(jié)課的解題過(guò)程,歸納小結(jié)出配方法解一元二次方程的步驟:1、把常數(shù)項(xiàng)移到方程右邊,用二次項(xiàng)系數(shù)除方程的兩邊使新方程的二次項(xiàng)系數(shù)為1;2、在方程的兩邊各加上一次項(xiàng)系數(shù)的一半的平方,使左邊成為完全平方;如果方程的右邊整理后是非負(fù)數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論