高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納_第1頁(yè)
高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納_第2頁(yè)
高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納_第3頁(yè)
高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納_第4頁(yè)
高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上高一數(shù)學(xué)必修五知識(shí)點(diǎn)歸納 (一)、映射、函數(shù)、反函數(shù) 1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射. 2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn): (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù). (2)掌握三種表示法列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式. (3)如果y=f(u),u=g(x),那么y=fg(x)叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù). 3、求函數(shù)y=f(x)的反函數(shù)的一般步驟: (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域; (2

2、)由y=f(x)的解析式求出x=f-1(y); (3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域. 注意:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起. 熟悉的應(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,能夠避免求反函數(shù)的過程,從而簡(jiǎn)化運(yùn)算. (二)、函數(shù)的解析式與定義域 1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存有的,所以,要準(zhǔn)確地寫出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型: (1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮; (2)

3、已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如: 分式的分母不得為零; 偶次方根的被開方數(shù)不小于零; 對(duì)數(shù)函數(shù)的真數(shù)必須大于零; 指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1; 三角函數(shù)中的正切函數(shù)y=tanx(xR,且kZ),余切函數(shù)y=cotx(xR,xk,kZ)等. 應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集). (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可. 已知f(x)的定義域是a,b,求fg(x)的定義域是指滿足ag(x)b的x的取值范圍,而已知fg(x)的定義域a,b指的是xa,b,此時(shí)

4、f(x)的定義域,即g(x)的值域. 2、求函數(shù)的解析式一般有四種情況 (1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的相關(guān)知識(shí)尋求函數(shù)的解析式. (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可. (3)若題設(shè)給出復(fù)合函數(shù)fg(x)的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域. (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知

5、等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式. (三)、函數(shù)的值域與最值 1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下: (1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域. (2)換元法:使用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元. (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,

6、形如(a0)的函數(shù)值域可采用此法求得. (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)相關(guān)的函數(shù)的值域問題可考慮用配方法. (5)不等式法求值域:利用基本不等式a+ba,b(0,+)能夠求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧. (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“0”求值域.其題型特征是解析式中含有根式或分式. (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域. (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值

7、域. 2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系 求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存有一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.所以求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,僅僅提問的角度不同,因而答題的方式就有所相異. 如函數(shù)的值域是(0,16,值是16,無最小值.再如函數(shù)的值域是(-,-22,+),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響. 3、函數(shù)的最值在實(shí)際問題中的應(yīng)用 函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或

8、“面積(體積)(最小)”等諸多現(xiàn)實(shí)問題上,求解時(shí)要特別注重實(shí)際意義對(duì)自變量的制約,以便能準(zhǔn)確求得最值. (四)、函數(shù)的奇偶性 1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)). 準(zhǔn)確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)). 2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有

9、時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式: 注意如下結(jié)論的使用: (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù); (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”; (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù); (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。 3、相關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論 (1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函

10、數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱. (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù). (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立. (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。 (5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù). (6)奇偶性的推廣 函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都

11、有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。 【二】 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:AB為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),xA.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合f(x)|xA叫做函數(shù)的值域. 注意:如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;函數(shù)的定義域、值域要寫成集合或

12、區(qū)間的形式. 定義域補(bǔ)充 能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是: (1)分式的分母不等于零; (2)偶次方根的被開方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零; (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不能夠等于零 2.構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域 再注意: (1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.因?yàn)橹涤蚴怯啥x域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相

13、等(或?yàn)橥缓瘮?shù)) (2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:表達(dá)式相同;定義域一致(兩點(diǎn)必須同時(shí)具備) 值域補(bǔ)充 (1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ).(3).求函數(shù)值域的常用方法有:直接法、反函數(shù)法、換元法、配方法、均值不等式法、判別式法、單調(diào)性法等. 3.函數(shù)圖象知識(shí)歸納 (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(xA)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P

14、(x,y)的集合C,叫做函數(shù)y=f(x),(xA)的圖象. C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.即記為C=P(x,y)|y=f(x),xA 圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成. (2)畫法 A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相對(duì)應(yīng)的點(diǎn)P(x,y),最后用平滑的曲線將這些點(diǎn)連接起來. B、圖象變換法(請(qǐng)參考必修4三角函數(shù)) 常用變換方法有三種,即平移變換

15、、伸縮變換和對(duì)稱變換 (3)作用: 1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提升解題的速度。 發(fā)現(xiàn)解題中的錯(cuò)誤。 4.快去了解區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示. 5.什么叫做映射 一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f:AB” 給定一個(gè)集合A到B的映射,如果aA,bB.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象 說明:函數(shù)

16、是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),集合A、B及對(duì)應(yīng)法則f是確定的;對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對(duì)應(yīng),它與從B到A的對(duì)應(yīng)關(guān)系一般是不同的;對(duì)于映射f:AB來說,則應(yīng)滿足:()集合A中的每一個(gè)元素,在集合B中都有象,并且象是的;()集合A中不同的元素,在集合B中對(duì)應(yīng)的象能夠是同一個(gè);()不要求集合B中的每一個(gè)元素在集合A中都有原象。 常用的函數(shù)表示法及各自的優(yōu)點(diǎn): 函數(shù)圖象既能夠是連續(xù)的曲線,也能夠是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);解析法:必須注明函數(shù)的定義域;圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡(jiǎn)函數(shù)的解析式;觀察函數(shù)的特征;列表法:選擇的自變量要有代表性,應(yīng)能反映定義域的特征. 注意啊:解析法:便于算出函數(shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值 補(bǔ)充一:分段函數(shù)(參見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論