版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、空間幾何體的表面積和體積習(xí)題講解一課標(biāo)要求:了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。二命題走向近些年來在高考中不僅有直接求多面體、旋轉(zhuǎn)體的面積和體積問題,也有已知面積或體積求某些元素的量或元素間的位置關(guān)系問題。即使考查空間線面的位置關(guān)系問題,也常以幾何體為依托.因而要熟練掌握多面體與旋轉(zhuǎn)體的概念、性質(zhì)以及它們的求積公式.同時(shí)也要學(xué)會(huì)運(yùn)用等價(jià)轉(zhuǎn)化思想,會(huì)把組合體求積問題轉(zhuǎn)化為基本幾何體的求積問題,會(huì)等體積轉(zhuǎn)化求解問題,會(huì)把立體問題轉(zhuǎn)化為平面問題求解,會(huì)運(yùn)用“割補(bǔ)法”等求解??疾樾问剑海?)用選擇、填空題考查本章的基本性質(zhì)和求積公式;(2)考題可能為:與多面體和旋轉(zhuǎn)體的面
2、積、體積有關(guān)的計(jì)算問題;與多面體和旋轉(zhuǎn)體中某些元素有關(guān)的計(jì)算問題;三要點(diǎn)精講1多面體的面積和體積公式名稱側(cè)面積()全面積()體 積()棱柱棱柱直截面周長(zhǎng)×l直棱柱棱錐棱錐各側(cè)面積之和正棱錐棱臺(tái)棱臺(tái)各側(cè)面面積之和正棱臺(tái)表中S表示面積,、分別表示上、下底面周長(zhǎng),表斜高,表示斜高,表示側(cè)棱長(zhǎng)。2旋轉(zhuǎn)體的面積和體積公式名稱圓柱圓錐圓臺(tái)球表中、分別表示母線、高,表示圓柱、圓錐與球冠的底半徑,、分別表示圓臺(tái) 上、下底面半徑,表示半徑。四典例解析題型1:柱體的體積和表面積例1一個(gè)長(zhǎng)方體全面積是20cm2,所有棱長(zhǎng)的和是24cm,求長(zhǎng)方體的對(duì)角線長(zhǎng).解:設(shè)長(zhǎng)方體的長(zhǎng)、寬、高、對(duì)角線長(zhǎng)分別為、ycm、
3、zcm、lcm依題意得: 由(2)2得:x2+y2+z2+2xy+2yz+2xz=36(3)由(3)(1)得x2+y2+z2=16即l2=16所以l=4(cm)。點(diǎn)評(píng):涉及棱柱面積問題的題目多以直棱柱為主,而直棱柱中又以正方體、長(zhǎng)方體的表面積多被考察。我們平常的學(xué)習(xí)中要多建立一些重要的幾何要素(對(duì)角線、內(nèi)切)與面積、體積之間的關(guān)系。例2如圖1所示,在平行六面體ABCDA1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=。(1)求證:頂點(diǎn)A1在底面ABCD上的射影O在BAD的平分線上;(2)求這個(gè)平行六面體的體積。圖1 圖2解析:(1)如圖2,連結(jié)A1O,則A1
4、O底面ABCD。作OMAB交AB于M,作ONAD交AD于N,連結(jié)A1M,A1N。由三垂線定得得A1MAB,A1NAD。A1AM=A1AN,RtA1NARtA1MA,A1M=A1N,從而OM=ON。點(diǎn)O在BAD的平分線上。(2)AM=AA1cos=3×=AO=。又在RtAOA1中,A1O2=AA12 AO2=9=,A1O=,平行六面體的體積為。題型2:柱體的表面積、體積綜合問題例3一個(gè)長(zhǎng)方體共一頂點(diǎn)的三個(gè)面的面積分別是,這個(gè)長(zhǎng)方體對(duì)角線的長(zhǎng)是( )A2 B3 C6 D解析:設(shè)長(zhǎng)方體共一頂點(diǎn)的三邊長(zhǎng)分別為a=1,b,c,則對(duì)角線l的長(zhǎng)為l=;答案D。點(diǎn)評(píng):解題思路是將三個(gè)面的面積轉(zhuǎn)化為解
5、棱柱面積、體積的幾何要素棱長(zhǎng)。例4如圖,三棱柱ABCA1B1C1中,若E、F分別為AB、AC 的中點(diǎn),平面EB1C1將三棱柱分成體積為V1、V2的兩部分,那么V1V2= _ _。解:設(shè)三棱柱的高為h,上下底的面積為S,體積為V,則V=V1+V2Sh。E、F分別為AB、AC的中點(diǎn),SAEF=S,V1=h(S+S+)=ShV2=Sh-V1=Sh,V1V2=75。點(diǎn)評(píng):解題的關(guān)鍵是棱柱、棱臺(tái)間的轉(zhuǎn)化關(guān)系,建立起求解體積的幾何元素之間的對(duì)應(yīng)關(guān)系。最后用統(tǒng)一的量建立比值得到結(jié)論即可。題型3:錐體的體積和表面積例5 (2008山東卷6)右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是D(A)
6、9(B)10(C)11 (D)12(2008江西卷10)連結(jié)球面上兩點(diǎn)的線段稱為球的弦。半徑為4的球的兩條弦、的長(zhǎng)度分別等于、,、分別為、的中點(diǎn),每條弦的兩端都在球面上運(yùn)動(dòng),有下列四個(gè)命題:弦、可能相交于點(diǎn) 弦、可能相交于點(diǎn)的最大值為5 的最小值為1其中真命題的個(gè)數(shù)為CA1個(gè) B2個(gè) C3個(gè) D4個(gè)(2008湖北卷3)用與球心距離為的平面去截球,所得的截面面積為,則球的體積為BA. B. C. D. 點(diǎn)評(píng):本小題重點(diǎn)考查線面垂直、面面垂直、二面角及其平面角、棱錐的體積。在能力方面主要考查空間想象能力。例6(2008北京,19)(本小題滿分12分)如圖,在四棱錐中,平面平面,是等邊三角形,已知,
7、()設(shè)是上的一點(diǎn),證明:平面平面;()求四棱錐的體積()證明:在中,由于,所以故又平面平面,平面平面,平面,所以平面,又平面,故平面平面()解:過作交于,由于平面平面,所以平面因此為四棱錐的高,又是邊長(zhǎng)為4的等邊三角形因此在底面四邊形中,所以四邊形是梯形,在中,斜邊邊上的高為,此即為梯形的高,所以四邊形的面積為故點(diǎn)評(píng):本題比較全面地考查了空間點(diǎn)、線、面的位置關(guān)系。要求對(duì)圖形必須具備一定的洞察力,并進(jìn)行一定的邏輯推理。題型4:錐體體積、表面積綜合問題例7ABCD是邊長(zhǎng)為4的正方形,E、F分別是AB、AD的中點(diǎn),GB垂直于正方形ABCD所在的平面,且GC2,求點(diǎn)B到平面EFC的距離?解:如圖,取E
8、F的中點(diǎn)O,連接GB、GO、CD、FB構(gòu)造三棱錐BEFG。設(shè)點(diǎn)B到平面EFG的距離為h,BD,EF,CO。 。而GC平面ABCD,且GC2。由,得·點(diǎn)評(píng):該問題主要的求解思路是將點(diǎn)面的距離問題轉(zhuǎn)化為體積問題來求解。構(gòu)造以點(diǎn)B為頂點(diǎn),EFG為底面的三棱錐是解此題的關(guān)鍵,利用同一個(gè)三棱錐的體積的唯一性列方程是解這類題的方法,從而簡(jiǎn)化了運(yùn)算。例8(2007江西理,12)如圖,在四面體ABCD中,截面AEF經(jīng)過四面體的內(nèi)切球(與四個(gè)面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐ABEFD與三棱錐AEFC的表面積分別是S1,S2,則必有( )
9、AS1<S2 BS1>S2CS1=S2 DS1,S2的大小關(guān)系不能確定解:連OA、OB、OC、OD,則VABEFDVOABDVOABEVOBEFDVAEFCVOADCVOAECVOEFC又VABEFDVAEFC,而每個(gè)三棱錐的高都是原四面體的內(nèi)切球的半徑,故SABDSABESBEFDSADCSAECSEFC又面AEF公共,故選C點(diǎn)評(píng):該題通過復(fù)合平面圖形的分割過程,增加了題目處理的難度,求解棱錐的體積、表面積首先要轉(zhuǎn)化好平面圖形與空間幾何體之間元素間的對(duì)應(yīng)關(guān)系。題型5:棱臺(tái)的體積、面積及其綜合問題例9(2008四川理,19)(本小題滿分12分)如圖,面ABEF面ABCD,四邊形AB
10、EF與四邊形ABCD都是直角梯形,BAD=FAB=90°,BCAD,BEAF,G、H分別是FA、FD的中點(diǎn)。()證明:四邊形BCHG是平行四邊形;()C、D、E、F四點(diǎn)是否共面?為什么?()設(shè)AB=BE,證明:平面ADE平面CDE.)解法一: ()由題設(shè)知,F(xiàn)G=GA,FH=HD. 所以GH , 又BC ,故GH BC. 所以四邊形BCHG是平行四邊形. ()C、D、F、E四點(diǎn)共面.理由如下: 由BE ,G是FA的中點(diǎn)知,BE GF,所以EFBG. 由()知BGGH,故FH共面.又點(diǎn)D在直線FH上. 所以C、D、F、E四點(diǎn)共面. ()連結(jié)EG,由AB=BE,BE AG及BAG=90&
11、#176;知ABEG是正方形. 故BGEA.由題設(shè)知,F(xiàn)A、AD、AB兩兩垂直,故AD平面FABE, 因此EA是ED在平面FABE內(nèi)的射影,根據(jù)三垂線定理,BGED. 又EDEAE,所以BG平面ADE. 由()知,CHBG,所以CH平面ADE.由()知F平面CDE.故CH平面CDE,得平面ADE平面CDE. 解法二: 由題設(shè)知,F(xiàn)A、AB、AD兩兩互相垂直. 如圖,以A為坐標(biāo)原點(diǎn),射線AB為x軸正方向建立直角坐標(biāo)系A(chǔ)-xyz. ()設(shè)AB=a,BC=b,BE=c,則由題設(shè)得 A(0,0,0),B(a,0,0),C(a,b,0),D(0,2b,0),E(a,0,c),G(0,0,c),H(0,b
12、,c). 所以, 于是又點(diǎn)G不在直線BC上.所以四邊形BCHG是平行四邊形.()C、D、F、E四點(diǎn)共面.理由如下:由題設(shè)知,F(xiàn)(0,0,2c),所以()由AB=BE,得c=a,所以又即 CHAE,CHAD,又 ADAE =A,所以CH平面ADE,故由CH平面CDFE,得平面ADE平面CDE.點(diǎn)評(píng):該題背景較新穎,把求二面角的大小與證明線、面平行這一常規(guī)運(yùn)算置于非規(guī)則幾何體(擬柱體)中,能考查考生的應(yīng)變能力和適應(yīng)能力,而第三步研究擬柱體的近似計(jì)算公式與可精確計(jì)算體積的辛普生公式之間計(jì)算誤差的問題,是極具實(shí)際意義的問題??疾榱丝忌^續(xù)學(xué)習(xí)的潛能。例10(1)(2008四川理,8)設(shè)是球心的半徑上的
13、兩點(diǎn),且,分別過作垂線于的面截球得三個(gè)圓,則這三個(gè)圓的面積之比為:( D )()()()()【解】:設(shè)分別過作垂線于的面截球得三個(gè)圓的半徑為,球半徑為,則: 這三個(gè)圓的面積之比為: 故選D【點(diǎn)評(píng)】:此題重點(diǎn)考察球中截面圓半徑,球半徑之間的關(guān)系;【突破】:畫圖數(shù)形結(jié)合,提高空間想象能力,利用勾股定理;例11(2008四川文,12)若三棱柱的一個(gè)側(cè)面是邊長(zhǎng)為2的正方形,另外兩個(gè)側(cè)面都是有一個(gè)內(nèi)角為的菱形,則該棱柱的體積等于( B )() () () ()【解】:如圖在三棱柱中,設(shè),由條件有,作于點(diǎn),則 故選B【點(diǎn)評(píng)】:此題重點(diǎn)考察立體幾何中的最小角定理和柱體體積公式,同時(shí)考察空間想象能力;【突破】
14、:具有較強(qiáng)的空間想象能力,準(zhǔn)確地畫出圖形是解決此題的前提,熟悉最小角定理并能準(zhǔn)確應(yīng)用是解決此題的關(guān)鍵;例12如圖99,一個(gè)底面半徑為R的圓柱形量杯中裝有適量的水.若放入一個(gè)半徑為r的實(shí)心鐵球,水面高度恰好升高r,則= 。解析:水面高度升高r,則圓柱體積增加R2·r。恰好是半徑為r的實(shí)心鐵球的體積,因此有r3=R2r。故。答案為。點(diǎn)評(píng):本題主要考查旋轉(zhuǎn)體的基礎(chǔ)知識(shí)以及計(jì)算能力和分析、解決問題的能力。題型7:圓錐的體積、表面積及綜合問題例13已知過球面上三點(diǎn)的截面和球心的距離為球半徑的一半,且,求球的表面積。解:設(shè)截面圓心為,連結(jié),設(shè)球半徑為,則,在中,。點(diǎn)評(píng): 正確應(yīng)用球的表面積公式,
15、建立平面圓與球的半徑之間的關(guān)系。例14如圖所示,球面上有四個(gè)點(diǎn)P、A、B、C,如果PA,PB,PC兩兩互相垂直,且PA=PB=PC=a,求這個(gè)球的表面積。解析:如圖,設(shè)過A、B、C三點(diǎn)的球的截面圓半徑為r,圓心為O,球心到該圓面的距離為d。在三棱錐PABC中,PA,PB,PC兩兩互相垂直,且PA=PB=PC=a,AB=BC=CA=a,且P在ABC內(nèi)的射影即是ABC的中心O。由正弦定理,得 =2r,r=a。又根據(jù)球的截面的性質(zhì),有OO平面ABC,而PO平面ABC,P、O、O共線,球的半徑R=。又PO=a,OO=R a=d=,(Ra)2=R2 (a)2,解得R=a,S球=4R2=3a2。點(diǎn)評(píng):本題
16、也可用補(bǔ)形法求解。將PABC補(bǔ)成一個(gè)正方體,由對(duì)稱性可知,正方體內(nèi)接于球,則球的直徑就是正方體的對(duì)角線,易得球半徑R=a,下略。題型9:球的面積、體積綜合問題例15(1)表面積為的球,其內(nèi)接正四棱柱的高是,求這個(gè)正四棱柱的表面積。(2)正四面體ABCD的棱長(zhǎng)為a,球O是內(nèi)切球,球O1是與正四面體的三個(gè)面和球O都相切的一個(gè)小球,求球O1的體積。解:(1)設(shè)球半徑為,正四棱柱底面邊長(zhǎng)為,則作軸截面如圖,又,(2)如圖,設(shè)球O半徑為R,球O1的半徑為r,E為CD中點(diǎn),球O與平面ACD、BCD切于點(diǎn)F、G,球O1與平面ACD切于點(diǎn)H 由題設(shè)AOFAEG ,得AO1HAOF ,得點(diǎn)評(píng):正四面體的內(nèi)切球與
17、各面的切點(diǎn)是面的中心,球心到各面的距離相等。題型10:球的經(jīng)緯度、球面距離問題例19(1)我國(guó)首都靠近北緯緯線,求北緯緯線的長(zhǎng)度等于多少?(地球半徑大約為)(2)在半徑為的球面上有三點(diǎn),求球心到經(jīng)過這三點(diǎn)的截面的距離。解:(1)如圖,是北緯上一點(diǎn),是它的半徑,設(shè)是北緯的緯線長(zhǎng),答:北緯緯線長(zhǎng)約等于(2)解:設(shè)經(jīng)過三點(diǎn)的截面為,設(shè)球心為,連結(jié),則平面,所以,球心到截面距離為例16在北緯圈上有兩點(diǎn),設(shè)該緯度圈上兩點(diǎn)的劣弧長(zhǎng)為(為地球半徑),求兩點(diǎn)間的球面距離。解:設(shè)北緯圈的半徑為,則,設(shè)為北緯圈的圓心,中,所以,兩點(diǎn)的球面距離等于點(diǎn)評(píng):要求兩點(diǎn)的球面距離,必須先求出兩點(diǎn)的直線距離,再求出這兩點(diǎn)的球
18、心角,進(jìn)而求出這兩點(diǎn)的球面距離。(2008廣東文18)(本小題滿分14分)如圖5所示,四棱錐P-ABCD的底面ABCD是半徑為R的圓的內(nèi)接四邊形,其中BD是圓的直徑,。(1)求線段PD的長(zhǎng);(2)若,求三棱錐P-ABC的體積?!窘馕觥浚?) BD是圓的直徑 又 , ; (2 ) 在中, 又 底面ABCD 三棱錐的體積為 .五思維總結(jié)1正四面體的性質(zhì) 設(shè)正四面體的棱長(zhǎng)為,則這個(gè)正四面體的(1)全面積:;(2)體積:;(3)對(duì)棱中點(diǎn)連線段的長(zhǎng):;(4)內(nèi)切球半徑:r=;(5)外接球半徑:;(6)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為定值(等于正四面體的高)。2直角四面體的性質(zhì) 有一個(gè)三面角的各個(gè)面角都是直角的四面體叫做直角四面體.直角四面 體有下列性質(zhì):如圖,在直角四面體AOCB中,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全民健身健康挑戰(zhàn)合同
- 2025年浙教新版高三語(yǔ)文上冊(cè)階段測(cè)試試卷含答案
- 2025年統(tǒng)編版選修4地理下冊(cè)階段測(cè)試試卷含答案
- 2025年度頂級(jí)時(shí)尚品牌代言人形象推廣合同4篇
- 寧波2025年度房地產(chǎn)項(xiàng)目合作開發(fā)合同范本4篇
- 2025年中國(guó)國(guó)電甘肅電力有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年度虛擬現(xiàn)實(shí)(VR)內(nèi)容制作與分發(fā)合同4篇
- 2025年華東師大版選擇性必修3地理下冊(cè)月考試卷
- 2025年浙江紹興諸暨市東大次塢污水處理有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2025年粵教版高二歷史下冊(cè)月考試卷含答案
- 專題24 短文填空 選詞填空 2024年中考英語(yǔ)真題分類匯編
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護(hù)理查房
- 2024年江蘇護(hù)理職業(yè)學(xué)院高職單招(英語(yǔ)/數(shù)學(xué)/語(yǔ)文)筆試歷年參考題庫(kù)含答案解析
- 電能質(zhì)量與安全課件
- 醫(yī)藥營(yíng)銷團(tuán)隊(duì)建設(shè)與管理
- 工程項(xiàng)目設(shè)計(jì)工作管理方案及設(shè)計(jì)優(yōu)化措施
- 圍場(chǎng)滿族蒙古族自治縣金匯螢石開采有限公司三義號(hào)螢石礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 小升初幼升小擇校畢業(yè)升學(xué)兒童簡(jiǎn)歷
- 資金支付審批單
- 第一單元(金融知識(shí)進(jìn)課堂)課件
評(píng)論
0/150
提交評(píng)論