人民教育出版數(shù)學(xué)八下第十八章平行四邊形全章課程教案1_第1頁(yè)
人民教育出版數(shù)學(xué)八下第十八章平行四邊形全章課程教案1_第2頁(yè)
人民教育出版數(shù)學(xué)八下第十八章平行四邊形全章課程教案1_第3頁(yè)
人民教育出版數(shù)學(xué)八下第十八章平行四邊形全章課程教案1_第4頁(yè)
人民教育出版數(shù)學(xué)八下第十八章平行四邊形全章課程教案1_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第十八章 平行四邊形18.1.1 平行四邊形及其性質(zhì)(一)一、 教學(xué)目標(biāo):1 理解并掌握平行四邊形的概念和平行四邊形對(duì)邊、對(duì)角相等的性質(zhì)2 會(huì)用平行四邊形的性質(zhì)解決簡(jiǎn)單的平行四邊形的計(jì)算問(wèn)題,并會(huì)進(jìn)行有關(guān)的論證3 培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的能力及邏輯推理能力二、 重點(diǎn)、難點(diǎn)1 重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì),以及性質(zhì)的應(yīng)用2 難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算三、課堂引入1我們一起來(lái)觀察下圖中的竹籬笆格子和汽車的防護(hù)鏈,想一想它們是什么幾何圖形的形象?平行四邊形是我們常見(jiàn)的圖形,你還能舉出平行四邊形在生活中應(yīng)用的例子嗎?你能總結(jié)出平行四邊形的定義嗎?(1)

2、定義:兩組對(duì)邊分別平行的四邊形是平行四邊形(2)表示:平行四邊形用符號(hào)“”來(lái)表示如圖,在四邊形ABCD中,ABDC,ADBC,那么四邊形ABCD是平行四邊形平行四邊形ABCD記作“ ABCD”,讀作“平行四邊形ABCD”AB/DC ,AD/BC , 四邊形ABCD是平行四邊形(判定); 四邊形ABCD是平行四邊形AB/DC, AD/BC(性質(zhì))注意:平行四邊形中對(duì)邊是指無(wú)公共點(diǎn)的邊,對(duì)角是指不相鄰的角,鄰邊是指有公共端點(diǎn)的邊,鄰角是指有一條公共邊的兩個(gè)角而三角形對(duì)邊是指一個(gè)角的對(duì)邊,對(duì)角是指一條邊的對(duì)角 2【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外,還有什么

3、特殊的性質(zhì)呢?我們一起來(lái)探究一下讓學(xué)生根據(jù)平行四邊形的定義畫(huà)一個(gè)一個(gè)平行四邊形,觀察這個(gè)四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致? (1)由定義知道,平行四邊形的對(duì)邊平行根據(jù)平行線的性質(zhì)可知,在平行四邊形中,相鄰的角互為補(bǔ)角 (2)猜想 平行四邊形的對(duì)邊相等、對(duì)角相等下面證明這個(gè)結(jié)論的正確性已知:如圖ABCD,求證:ABCD,CBAD,BD,BADBCD證明:連接AC, ABCD,ADBC, 13,24又 ACCA, ABCCDA (ASA) ABCD,CBAD,BD又 1423, BADBCD由此得到:平行四邊形性質(zhì)1平行四

4、邊形的對(duì)邊相等平行四邊形性質(zhì)2 平行四邊形的對(duì)角相等五、例習(xí)題分析例1(教材P42例1) 例2(補(bǔ)充)如圖,在平行四邊形ABCD中,AE=CF,求證:AF=CE18.1.1 平行四邊形的性質(zhì)(二)一、 教學(xué)目標(biāo):1 理解平行四邊形中心對(duì)稱的特征,掌握平行四邊形對(duì)角線互相平分的性質(zhì)2 能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問(wèn)題,和簡(jiǎn)單的證明題3 培養(yǎng)學(xué)生的推理論證能力和邏輯思維能力一、 重點(diǎn)、難點(diǎn)1 重點(diǎn):平行四邊形對(duì)角線互相平分的性質(zhì),以及性質(zhì)的應(yīng)用2 難點(diǎn):綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算四、課堂引入1復(fù)習(xí)提問(wèn):(1)什么樣的四邊形是平行四邊形?四邊形與平行四邊形的關(guān)

5、系是:(2)平行四邊形的性質(zhì):具有一般四邊形的性質(zhì)(內(nèi)角和是)角:平行四邊形的對(duì)角相等,鄰角互補(bǔ) 邊:平行四邊形的對(duì)邊相等 2【探究】:請(qǐng)學(xué)生在紙上畫(huà)兩個(gè)全等的ABCD和EFGH,并連接對(duì)角線AC、BD和EG、HF,設(shè)它們分別交于點(diǎn)O把這兩個(gè)平行四邊形落在一起,在點(diǎn)O處釘一個(gè)圖釘,將ABCD繞點(diǎn)O旋轉(zhuǎn),觀察它還和EFGH重合嗎?你能從子中看出前面所得到的平行四邊形的邊、角關(guān)系嗎?進(jìn)一步,你還能發(fā)現(xiàn)平行四邊形的什么性質(zhì)嗎?結(jié)論:(1)平行四邊形是中心對(duì)稱圖形,兩條對(duì)角線的交點(diǎn)是對(duì)稱中心; (2)平行四邊形的對(duì)角線互相平分五、例習(xí)題分析例1(補(bǔ)充) 已知:如圖421, ABCD的對(duì)角線AC、BD相

6、交于點(diǎn)O,EF過(guò)點(diǎn)O與AB、CD分別相交于點(diǎn)E、F求證:OEOF,AE=CF,BE=DF證明:在 ABCD中,ABCD,1234又 OAOC(平行四邊形的對(duì)角線互相平分), AOECOF(ASA)OEOF,AE=CF(全等三角形對(duì)應(yīng)邊相等) ABCD, AB=CD(平行四邊形對(duì)邊相等) ABAE=CDCF 即 BE=FD【引申】若例1中的條件都不變,將EF轉(zhuǎn)動(dòng)到圖b的位置,那么例1的結(jié)論是否成立?若將EF向兩方延長(zhǎng)與平行四邊形的兩對(duì)邊的延長(zhǎng)線分別相交(圖c和圖d),例1的結(jié)論是否成立,說(shuō)明你的理由例2(教材P44的例2)已知四邊形ABCD是平行四邊形,AB10cm,AD8cm,ACBC,求BC

7、、CD、AC、OA的長(zhǎng)以及ABCD的面積18.1.2(一) 平行四邊形的判定一、 教學(xué)目標(biāo):    1在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法    2會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題    3培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來(lái)研究問(wèn)題二、重點(diǎn)、難點(diǎn)3 重點(diǎn):平行四邊形的判定方法及應(yīng)用4 難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用四、課堂引入1欣賞圖片、提出問(wèn)題展示圖片,提出問(wèn)題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?2【探究】:小

8、明的父親手中有一些木條,他想通過(guò)適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來(lái)嗎?讓學(xué)生利用手中的學(xué)具硬紙板條通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?(3)你能說(shuō)出你的做法及其道理嗎?(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?(5)你還能找出其他方法嗎?從探究中得到:平行四邊形判定方法1 兩組對(duì)邊分別相等的四邊形是平行四邊形。平行四邊形判定方法2 對(duì)角線互相平分的四邊形是平行四邊形。五、例習(xí)題分析例1(教材P46

9、例3)已知:如圖ABCD的對(duì)角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF求證:四邊形BFDE是平行四邊形分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來(lái)證明(證明過(guò)程參看教材)問(wèn);你還有其它的證明方法嗎?比較一下,哪種證明方法簡(jiǎn)單例2(補(bǔ)充) 已知:如圖,ABBA,BCCB, CAAC求證:(1) ABCB,CABA,BCAC;(2) ABC的頂點(diǎn)分別是BCA各邊的中點(diǎn)證明:(1) ABBA,CBBC, 四邊形ABCB是平行四邊形ABCB(平行四邊形的對(duì)角相等)同理CABA,BCAC(2) 由(1)證得四邊形ABCB是平行四邊形同理,四邊形ABAC是平行四邊形 ABBC

10、, ABAC(平行四邊形的對(duì)邊相等) BCAC同理 BACA, ABCBABC的頂點(diǎn)A、B、C分別是BCA的邊BC、CA、AB的中點(diǎn) 例3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形你能在圖中找出所有的平行四邊形嗎?并說(shuō)說(shuō)你的理由 解:有6個(gè)平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO 理由是:因?yàn)檎鼳BO正AOF,所以AB=BO,OF=FA根據(jù) “兩組對(duì)邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形其它五個(gè)同理 181.2(二) 平行四邊形的判定一、 教學(xué)目標(biāo):    1掌握用一組對(duì)邊平行且

11、相等來(lái)判定平行四邊形的方法    2會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來(lái)證明問(wèn)題    3通過(guò)平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問(wèn)題的能力二、 重點(diǎn)、難點(diǎn)1重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法2難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用四、課堂引入1 平行四邊形的性質(zhì);2 平行四邊形的判定方法;3 【探究】 取兩根等長(zhǎng)的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?結(jié)論:一組對(duì)邊平行且相等的四邊形是平行四邊形五、例習(xí)

12、題分析例1(補(bǔ)充)已知:如圖,ABCD中,E、F分別是AD、BC的中點(diǎn),求證:BE=DF 分析:證明BE=DF,可以證明兩個(gè)三角形全等,也可以證明四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡(jiǎn)單 證明: 四邊形ABCD是平行四邊形, ADCB,AD=CD E、F分別是AD、BC的中點(diǎn), DEBF,且DE=AD,BF=BC DE=BF 四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形) BE=DF 此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定,先運(yùn)用平行四邊形的性質(zhì)得到判定另一個(gè)四邊形是平行四邊形的條件,再應(yīng)用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復(fù)雜,但層次有三,且利用知識(shí)較多

13、,因此應(yīng)使學(xué)生獲得清晰的證明思路例2(補(bǔ)充)已知:如圖,ABCD中,E、F分別是AC上兩點(diǎn),且BEAC于E,DFAC于F求證:四邊形BEDF是平行四邊形分析:因?yàn)锽EAC于E,DFAC于F,所以BEDF需再證明BE=DF,這需要證明ABE與CDF全等,由角角邊即可 證明: 四邊形ABCD是平行四邊形, AB=CD,且ABCD BAE=DCF BEAC于E,DFAC于F, BEDF,且BEA=DFC=90° ABECDF (AAS) BE=DF 四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形)18.1.2(三) 平行四邊形的判定三角形的中位線一、 教學(xué)目標(biāo):1 理解三

14、角形中位線的概念,掌握它的性質(zhì)2 能較熟練地應(yīng)用三角形中位線性質(zhì)進(jìn)行有關(guān)的證明和計(jì)算3經(jīng)歷探索、猜想、證明的過(guò)程,進(jìn)一步發(fā)展推理論證的能力4能運(yùn)用綜合法證明有關(guān)三角形中位線性質(zhì)的結(jié)論理解在證明過(guò)程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等思想方法二、 重點(diǎn)、難點(diǎn)1重點(diǎn):掌握和運(yùn)用三角形中位線的性質(zhì)2難點(diǎn):三角形中位線性質(zhì)的證明(輔助線的添加方法)四、課堂引入1 平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?2 你能說(shuō)說(shuō)平行四邊形性質(zhì)與判定的用途嗎?(答:平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等;二是判定一個(gè)四邊形

15、是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題)3創(chuàng)設(shè)情境實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)圖中有幾個(gè)平行四邊形?你是如何判斷的?五、例習(xí)題分析 例1(教材P48例4) 如圖,點(diǎn)D、E、分別為ABC邊AB、AC的中點(diǎn),求證:DEBC且DE=BC 分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過(guò)的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來(lái)證明結(jié)論成立,從而使問(wèn)題得到解決,這就需要添加適當(dāng)?shù)妮o助線來(lái)構(gòu)造平行四邊形 方法1:如圖(1)

16、,延長(zhǎng)DE到F,使EF=DE,連接CF,由ADECFE,可得ADFC,且AD=FC,因此有BDFC,BD=FC,所以四邊形BCFD是平行四邊形所以DFBC,DF=BC,因?yàn)镈E=DF,所以DEBC且DE=BC(也可以過(guò)點(diǎn)C作CFAB交DE的延長(zhǎng)線于F點(diǎn),證明方法與上面大體相同) 方法2:如圖(2),延長(zhǎng)DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形所以ADFC,且AD=FC因?yàn)锳D=BD,所以BDFC,且BD=FC所以四邊形ADCF是平行四邊形所以DFBC,且DF=BC,因?yàn)镈E=DF,所以DEBC且DE=BC定義:連接三角形兩邊中點(diǎn)的線段叫做三角形

17、的中位線【思考】:(1)想一想:一個(gè)三角形的中位線共有幾條?三角形的中位線與中線有什么區(qū)別? (2)三角形的中位線與第三邊有怎樣的關(guān)系? (答:(1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線 (2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半)三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半拓展利用這一定理,你能證明出在設(shè)情境中分割出來(lái)的四個(gè)小三角形全等嗎?(讓學(xué)生口述理由)例2(補(bǔ)充)已知:如圖(1),在四邊形ABCD中,E、F、G、H分別是AB、BC、CD

18、、DA的中點(diǎn)求證:四邊形EFGH是平行四邊形分析:因?yàn)橐阎c(diǎn)E、F、G、H分別是線段的中點(diǎn),可以設(shè)法應(yīng)用三角形中位線性質(zhì)找到四邊形EFGH的邊之間的關(guān)系由于四邊形的對(duì)角線可以把四邊形分成兩個(gè)三角形,所以添加輔助線,連接AC或BD,構(gòu)造“三角形中位線”的基本圖形后,此題便可得證證明:連結(jié)AC(圖(2),DAG中, AH=HD,CG=GD, HGAC,HG=AC(三角形中位線性質(zhì))同理EFAC,EF=AC HGEF,且HG=EF 四邊形EFGH是平行四邊形此題可得結(jié)論:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形 18.2.1 矩形(一)一、教學(xué)目標(biāo):   

19、1掌握矩形的概念和性質(zhì),理解矩形與平行四邊形的區(qū)別與聯(lián)系    2會(huì)初步運(yùn)用矩形的概念和性質(zhì)來(lái)解決有關(guān)問(wèn)題    3滲透運(yùn)動(dòng)聯(lián)系、從量變到質(zhì)變的觀點(diǎn)二、重點(diǎn)、難點(diǎn)1重點(diǎn):矩形的性質(zhì)2難點(diǎn):矩形的性質(zhì)的靈活應(yīng)用四、課堂引入1展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?2思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫(huà)演示拉動(dòng)過(guò)程如圖)3再次演示平行四邊形的移動(dòng)過(guò)程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么

20、圖形?(小學(xué)學(xué)過(guò)的長(zhǎng)方形)引出本課題及矩形定義矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形)矩形是我們最常見(jiàn)的圖形之一,例如書(shū)桌面、教科書(shū)的封面等都有矩形形象【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀 隨著的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的? 當(dāng)是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?操作,思考、交流、歸納后得到矩形的性質(zhì)矩形性質(zhì)1 矩形的四個(gè)角都是直角矩形性質(zhì)2 矩形的對(duì)角線相等 如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)

21、2有AO=BO=CO=DO=AC=BD因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半五、例習(xí)題分析 例1 (教材P53例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng)分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅危运哂袑?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求解:四邊形ABCD是矩形,AC與BD相等且互相平分OA=OB又 AOB=60°, OAB是等邊三角形 矩形的對(duì)角線長(zhǎng)AC=BD = 2OA=2×4=8(cm) 例2(補(bǔ)充)已知:如圖

22、 ,矩形 ABCD,AB長(zhǎng)8 cm ,對(duì)角線比AD邊長(zhǎng)4 cm求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng)分析:(1)因?yàn)榫匦嗡膫€(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法略解:設(shè)AD=xcm,則對(duì)角線長(zhǎng)(x+4)cm,在RtABD中,由勾股定理:,解得x=6 則 AD=6cm(2)“直角三角形斜邊上的高”是一個(gè)基本圖形,利用面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個(gè)基本關(guān)系式: AE×DB AD×AB,解得 AE 4.8cm 例3(補(bǔ)充) 已知:如圖,矩形ABCD中,E是BC上一點(diǎn),DFA

23、E于F,若AE=BC 求證:CEEF 分析:CE、EF分別是BC,AE等線段上的一部分,若AFBE,則問(wèn)題解決,而證明AFBE,只要證明ABEDFA即可,在矩形中容易構(gòu)造全等的直角三角形 證明: 四邊形ABCD是矩形, B=90°,且ADBC 1=2 DFAE, AFD=90° B=AFD又 AD=AE, ABEDFA(AAS) AF=BE EF=EC 此題還可以連接DE,證明DEFDEC,得到EFEC18.2.1 矩形(二)一、教學(xué)目標(biāo):1理解并掌握矩形的判定方法2使學(xué)生能應(yīng)用矩形定義、判定等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力二、重點(diǎn)、難點(diǎn)1重點(diǎn):矩

24、形的判定2難點(diǎn):矩形的判定及性質(zhì)的綜合應(yīng)用四、課堂引入1什么叫做平行四邊形?什么叫做矩形?2矩形有哪些性質(zhì)?3矩形與平行四邊形有什么共同之處?有什么不同之處?4事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?通過(guò)討論得到矩形的判定方法矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形矩形判定方法2:有三個(gè)角是直角的四邊形是矩形(指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角)五、例習(xí)題分析 例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否

25、正確?為什么?    (1)有一個(gè)角是直角的四邊形是矩形; (×)    (2)有四個(gè)角是直角的四邊形是矩形; ()    (3)四個(gè)角都相等的四邊形是矩形; ()     (4)對(duì)角線相等的四邊形是矩形; (×)     (5)對(duì)角線相等且互相垂直的四邊形是矩形; (×)(6)對(duì)角線互相平分且相等的四邊形是矩形; ()(7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形; (&#

26、215;)(8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;()    (9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形 () 指出:    (l)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;    (2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論例2 (補(bǔ)充)已知 ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AOB是等邊三角形,AB=4 cm,求這個(gè)平行四邊形的面積分析:首先根據(jù)AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABC

27、D是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值解: 四邊形ABCD是平行四邊形, AO=AC,BO=BD AO=BO, AC=BD ABCD是矩形(對(duì)角線相等的平行四邊形是矩形)在RtABC中, AB=4cm,AC=2AO=8cm, BC=(cm) 例3 (補(bǔ)充)  已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H求證:四邊形EFGH是矩形分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明證明: 四邊形ABCD是平行四邊形, ADBCDABABC=180°又 AE平分DA

28、B,BG平分ABC ,EABABG=×180°=90°AFB=90°同理可證 AED=BGC=CHD=90° 四邊形EFGH是平行四邊形(有三個(gè)角是直角的四邊形是矩形)18.2.2 菱形(一)一、教學(xué)目的:1掌握菱形概念,知道菱形與平行四邊形的關(guān)系2理解并掌握菱形的定義及性質(zhì)1、2;會(huì)用這些性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算,會(huì)計(jì)算菱形的面積3通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力4根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫(huà)圖向?qū)W生滲透集合思想二、重點(diǎn)、難點(diǎn)1教學(xué)重點(diǎn):菱形的性質(zhì)1、22教學(xué)難點(diǎn):菱形的性質(zhì)及菱形知識(shí)的綜合應(yīng)用 四、課堂引

29、入1(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?2(引入)我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形矩形,其實(shí)還有另外的特殊平行四邊形,請(qǐng)看演示:(可將事先按如圖做成的一組對(duì)邊可以活動(dòng)的教具進(jìn)行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念菱形定義:有一組鄰邊相等的平行四邊形叫做菱形【強(qiáng)調(diào)】菱形(1)是平行四邊形;(2)一組鄰邊相等讓學(xué)生舉一些日常生活中所見(jiàn)到過(guò)的菱形的例子五、例習(xí)題分析例1 (補(bǔ)充) 已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E 求證:AFD=CBE 證明:四邊形ABCD是菱形, CB=CD, CA平分B

30、CD BCE=DCE又 CE=CE, BCECOB(SAS) CBE=CDE 在菱形ABCD中,ABCD, AFD=FDCAFD=CBE18.2.2 菱形(二)一、教學(xué)目的:1理解并掌握菱形的定義及兩個(gè)判定方法;會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算;2在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力二、重點(diǎn)、難點(diǎn)1教學(xué)重點(diǎn):菱形的兩個(gè)判定方法2教學(xué)難點(diǎn):判定方法的證明方法及運(yùn)用四、課堂引入1復(fù)習(xí)(1)菱形的定義:一組鄰邊相等的平行四邊形; (2)菱形的性質(zhì)1 菱形的四條邊都相等;性質(zhì)2 菱形的對(duì)角線互相平分,并且每條對(duì)角線平分一組對(duì)角;(3)運(yùn)用菱形的定義進(jìn)行菱形

31、的判定,應(yīng)具備幾個(gè)條件?(判定:2個(gè)條件)2【問(wèn)題】要判定一個(gè)四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?3【探究】用一長(zhǎng)一短兩根木條,在它們的中點(diǎn)處固定一個(gè)小釘,做成一個(gè)可轉(zhuǎn)動(dòng)的十字,四周圍上一根橡皮筋,做成一個(gè)四邊形轉(zhuǎn)動(dòng)木條,這個(gè)四邊形什么時(shí)候變成菱形?通過(guò)演示,容易得到:菱形判定方法1 對(duì)角線互相垂直的平行四邊形是菱形注意此方法包括兩個(gè)條件:(1)是一個(gè)平行四邊形;(2)兩條對(duì)角線互相垂直 通過(guò)教材對(duì)菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:菱形判定方法2 四邊都相等的四邊形是菱形五、例習(xí)題分析例1(補(bǔ)充)已知:如圖ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交

32、于E、F求證:四邊形AFCE是菱形證明: 四邊形ABCD是平行四邊形, AEFC 1=2又 AOE=COF,AO=CO, AOECOF EO=FO 四邊形AFCE是平行四邊形又 EFAC, AFCE是菱形(對(duì)角線互相垂直的平行四邊形是菱形) 例3(選講) 已知:如圖,ABC中, ACB=90°,BE平分ABC,CDAB與D,EHAB于H,CD交BE于F求證:四邊形CEHF為菱形 略證:易證CFEH,CE=EH,在RtBCE中,CBE+CEB=90°,在RtBDF中,DBF+DFB=90°,因?yàn)镃BE=DBF,CFE=DFB,所以CEB=CFE,所以CE=CF所以,

33、CF=CE=EH,CFEH,所以四邊形CEHF為菱形18.2.3 正方形一、教學(xué)目的1掌握正方形的概念、性質(zhì)和判定,并會(huì)用它們進(jìn)行有關(guān)的論證和計(jì)算2理解正方形與平行四邊形、矩形、菱形的聯(lián)系和區(qū)別,通過(guò)正方形與平行四邊形、矩形、菱形的聯(lián)系的教學(xué)對(duì)學(xué)生進(jìn)行辯證唯物主義教育,提高學(xué)生的邏輯思維能力 二、重點(diǎn)、難點(diǎn)1教學(xué)重點(diǎn):正方形的定義及正方形與平行四邊形、矩形、菱形的聯(lián)系 2教學(xué)難點(diǎn):正方形與矩形、菱形的關(guān)系及正方形性質(zhì)與判定的靈活運(yùn)用 四、課堂引入1做一做:用一張長(zhǎng)方形的紙片(如圖所示)折出一個(gè)正方形學(xué)生在動(dòng)手做中對(duì)正方形產(chǎn)生感性認(rèn)識(shí),并感知正方形與矩形的關(guān)系問(wèn)題:什么樣的四邊形是正方形?正方形

34、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形指出:正方形是在平行四邊形這個(gè)大前提下定義的,其定義包括了兩層意: (1)有一組鄰邊相等的平行四邊形 (菱形)(2)有一個(gè)角是直角的平行四邊形 (矩形)2【問(wèn)題】正方形有什么性質(zhì)?由正方形的定義可以得知,正方形既是有一組鄰邊相等的矩形,又是有一個(gè)角是直角的菱形所以,正方形具有矩形的性質(zhì),同時(shí)又具有菱形的性質(zhì)五、例習(xí)題分析例1(教材P58的例5) 求證:正方形的兩條對(duì)角線把正方形分成四個(gè)全等的等腰直角三角形已知:四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)O(如圖)求證:ABO、BCO、CDO、DAO是全等的等腰直角三角形證明: 四

35、邊形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的兩條對(duì)角線相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO 例2 (補(bǔ)充)已知:如圖,正方形ABCD中,對(duì)角線的交點(diǎn)為O,E是OB上的一點(diǎn),DGAE于G,DG交OA于F求證:OE=OF 分析:要證明OE=OF,只需證明AEODFO,由于正方形的對(duì)角線垂直平分且相等,可以得到AOE=DOF=90°,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根據(jù)ASA可以得到這兩個(gè)三角形全等,故結(jié)論可得 證明: 四邊形ABCD是正方形, AOE=DO

36、F=90°,AO=DO(正方形的對(duì)角線垂直平分且相等)又 DGAE, EAO+AEO=EDG+AEO=90° EAO=FDO AEO DFO OE=OF 例3 (補(bǔ)充)已知:如圖,四邊形ABCD是正方形,分別過(guò)點(diǎn)A、C兩點(diǎn)作l1l2,作BMl1于M,DNl1于N,直線MB、DN分別交l2于Q、P點(diǎn)求證:四邊形PQMN是正方形分析:由已知可以證出四邊形PQMN是矩形,再證ABMDAN,證出AM=DN,用同樣的方法證AN=DP即可證出MN=NP從而得出結(jié)論證明: PNl1,QMl1, PNQM,PNM=90° PQNM, 四邊形PQMN是矩形 四邊形ABCD是正方形

37、BAD=ADC=90°,AB=AD=DC(正方形的四條邊都相等,四個(gè)角都是直角) 1+2=90°又 3+2=90°, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四邊形PQMN是正方形(有一組鄰邊相等的矩形是正方形)課題:特殊平行四邊形綜合復(fù)習(xí)課1、掌握并能區(qū)分矩形、菱形、正方形的性質(zhì)與判定(重點(diǎn))2、矩形、菱形、正方形的性質(zhì)與判定綜合運(yùn)用.(難點(diǎn))【學(xué)習(xí)方案】正方形、平行四邊形、矩形、菱形的性質(zhì)可比較如下:平行四邊形矩形菱形正方形對(duì)邊平行且相等四條邊都相等對(duì)角相等四個(gè)角都是直角對(duì)角線互相平分對(duì)角線互相垂直對(duì)角線相等每

38、條對(duì)角線平分一組對(duì)角(凡是圖形所具有的性質(zhì),在表中相應(yīng)的空格中填上“”,沒(méi)有的性質(zhì)不要填寫)矩形的判定方法矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形矩形判定方法2:有三個(gè)角是直角的四邊形是矩形矩形判定方法3:有一個(gè)角是直角的平行四邊形是矩形矩形判定方法4:對(duì)角線相等且互相平分的四邊形是矩形直角三角形斜邊上的中線等于斜邊的一半1、已知:如圖 ,矩形 ABCD,AB長(zhǎng)8 cm ,對(duì)角線比AD邊長(zhǎng)4 cm求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng)2、如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F(xiàn)是AB上的一點(diǎn),EFEC,且EF=EC,DE=4cm,矩形ABCD的周長(zhǎng)為32cm,求AE的長(zhǎng)3、如圖,在ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F(1)求證:AB=CF;(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說(shuō)明理由 4、如圖,在ABCD中,DEAB于E,BMMCDC,求證:EMC=3BEM.菱形的判定菱形判定方法1:對(duì)角線互相垂直的平行四邊形是菱形注意此方法包括兩個(gè)條件:(1)是一個(gè)平行四邊形;(2)兩條對(duì)角線互相垂直菱形判定方法2:四邊都相等的四邊形是菱形1、  已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E 求證:AFD=CBE 2、已知:如圖ABCD的對(duì)角線AC的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論