231圖形的旋轉(zhuǎn)(1)_第1頁
231圖形的旋轉(zhuǎn)(1)_第2頁
231圖形的旋轉(zhuǎn)(1)_第3頁
231圖形的旋轉(zhuǎn)(1)_第4頁
231圖形的旋轉(zhuǎn)(1)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、教學(xué)時(shí)間課題23.1 圖形的旋轉(zhuǎn)(1)課型新授課教學(xué)目標(biāo)知識和能力了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對應(yīng)點(diǎn)的概念及其應(yīng)用它們解決一些實(shí)際問題過程和方法通過復(fù)習(xí)平移、軸對稱的有關(guān)概念及性質(zhì),從生活中的數(shù)學(xué)開始,經(jīng)歷觀察,產(chǎn)生概念,應(yīng)用概念解決一些實(shí)際問題情感態(tài)度價(jià)值觀讓學(xué)生經(jīng)歷觀察、操作等過程,了解圖形旋轉(zhuǎn)的概念,激發(fā)學(xué)習(xí)熱情教學(xué)重點(diǎn)旋轉(zhuǎn)及對應(yīng)點(diǎn)的有關(guān)概念及其應(yīng)用教學(xué)難點(diǎn)從活生生的數(shù)學(xué)中抽出概念教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課 堂 教 學(xué) 程 序 設(shè) 計(jì)設(shè)計(jì)意圖一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請同學(xué)們完成下面各題1將如圖所示的四邊形ABCD平移,使點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)D,作出平移后的圖形2

2、如圖,已知ABC和直線L,請你畫出ABC關(guān)于L的對稱圖形ABC 3圓是軸對稱圖形嗎?等腰三角形呢?你還能指出其它的嗎? (口述)老師點(diǎn)評并總結(jié): (1)平移的有關(guān)概念及性質(zhì) (2)如何畫一個(gè)圖形關(guān)于一條直線(對稱軸)的對稱圖形并口述它既有的一些性質(zhì) (3)什么叫軸對稱圖形? 二、探索新知 我們前面已經(jīng)復(fù)習(xí)平移等有關(guān)內(nèi)容,生活中是否還有其它運(yùn)動(dòng)變化呢?回答是肯定的,下面我們就來研究 1請同學(xué)們看講臺(tái)上的大時(shí)鐘,有什么在不停地轉(zhuǎn)動(dòng)?旋繞什么點(diǎn)呢?從現(xiàn)在到下課時(shí)鐘轉(zhuǎn)了多少度?分針轉(zhuǎn)了多少度?秒針轉(zhuǎn)了多少度? (口答)老師點(diǎn)評:時(shí)針、分針、秒針在不停地轉(zhuǎn)動(dòng),它們都繞時(shí)針的中心如果從現(xiàn)在到下課時(shí)針轉(zhuǎn)了_

3、度,分針轉(zhuǎn)了_度,秒針轉(zhuǎn)了_度 2再看我自制的好像風(fēng)車風(fēng)輪的玩具,它可以不停地轉(zhuǎn)動(dòng)如何轉(zhuǎn)到新的位置?(老師點(diǎn)評略) 3第1、2兩題有什么共同特點(diǎn)呢? 共同特點(diǎn)是如果我們把時(shí)針、風(fēng)車風(fēng)輪當(dāng)成一個(gè)圖形,那么這些圖形都可以繞著某一固定點(diǎn)轉(zhuǎn)動(dòng)一定的角度 像這樣,把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角 如果圖形上的點(diǎn)P經(jīng)過旋轉(zhuǎn)變?yōu)辄c(diǎn)P,那么這兩個(gè)點(diǎn)叫做這個(gè)旋轉(zhuǎn)的對應(yīng)點(diǎn) 下面我們來運(yùn)用這些概念來解決一些問題 例1如圖,如果把鐘表的指針看做三角形OAB,它繞O點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到OEF,在這個(gè)旋轉(zhuǎn)過程中: (1)旋轉(zhuǎn)中心是什么?旋轉(zhuǎn)角是什么?(2)經(jīng)過旋

4、轉(zhuǎn),點(diǎn)A、B分別移動(dòng)到什么位置? 解:(1)旋轉(zhuǎn)中心是O,AOE、BOF等都是旋轉(zhuǎn)角 (2)經(jīng)過旋轉(zhuǎn),點(diǎn)A和點(diǎn)B分別移動(dòng)到點(diǎn)E和點(diǎn)F的位置 例2(學(xué)生活動(dòng))如圖,四邊形ABCD、四邊形EFGH都是邊長為1的正方形 (1)這個(gè)圖案可以看做是哪個(gè)“基本圖案”通過旋轉(zhuǎn)得到的? (2)請畫出旋轉(zhuǎn)中心和旋轉(zhuǎn)角(3)指出,經(jīng)過旋轉(zhuǎn),點(diǎn)A、B、C、D分別移到什么位置?(老師點(diǎn)評)(1)可以看做是由正方形ABCD的基本圖案通過旋轉(zhuǎn)而得到的(2)畫圖略(3)點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D移到的位置是點(diǎn)E、點(diǎn)F、點(diǎn)G、點(diǎn)H 最后強(qiáng)調(diào),這個(gè)旋轉(zhuǎn)中心是固定的,即正方形對角線的交點(diǎn),但旋轉(zhuǎn)角和對應(yīng)點(diǎn)都是不唯一的 三、鞏固練習(xí)

5、教材P56 練習(xí)1、2、3 四、應(yīng)用拓展例3兩個(gè)邊長為1的正方形,如圖所示,讓一個(gè)正方形的頂點(diǎn)與另一個(gè)正方形中心重合,不難知道重合部分的面積為,現(xiàn)把其中一個(gè)正方形固定不動(dòng),另一個(gè)正方形繞其中心旋轉(zhuǎn),問在旋轉(zhuǎn)過程中,兩個(gè)正方形重疊部分面積是否發(fā)生變化?說明理由 分析:設(shè)任轉(zhuǎn)一角度,如圖中的虛線部分,要說明旋轉(zhuǎn)后正方形重疊部分面積不變,只要說明SOEE=SODD,那么只要說明OEFODD 解:面積不變 理由:設(shè)任轉(zhuǎn)一角度,如圖所示 在RtODD和RtOEE中 ODD=OEE=90° DOD=EOE=90°-BOE OD=OD ODDOEE SODD=SOEE S四邊形OEBD=

6、S正方形OEBD= 五、歸納小結(jié)(學(xué)生總結(jié),老師點(diǎn)評) 本節(jié)課要掌握: 1旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角的概念 2旋轉(zhuǎn)的對應(yīng)點(diǎn)及其它們的應(yīng)用作業(yè)設(shè)計(jì)必做教材P59:1、2、3選做P60:6教學(xué)反思教學(xué)時(shí)間課題23.1 圖形的旋轉(zhuǎn)(2)課型新授課教學(xué)目標(biāo)知識和能力理解對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;理解對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;理解旋轉(zhuǎn)前、后的圖形全等掌握以上三個(gè)圖形的旋轉(zhuǎn)的基本性質(zhì)的運(yùn)用過程和方法先復(fù)習(xí)旋轉(zhuǎn)及其旋轉(zhuǎn)中心、旋轉(zhuǎn)角和旋轉(zhuǎn)的對應(yīng)點(diǎn)概念,接著用操作幾何、實(shí)驗(yàn)探究圖形的旋轉(zhuǎn)的基本性質(zhì)情感態(tài)度價(jià)值觀從事圖形旋轉(zhuǎn)基本性質(zhì)的探索活動(dòng),進(jìn)一步發(fā)展空間觀察,培養(yǎng)運(yùn)動(dòng)幾何的觀點(diǎn),增強(qiáng)審美意識教

7、學(xué)重點(diǎn)圖形的旋轉(zhuǎn)的基本性質(zhì)及其應(yīng)用教學(xué)難點(diǎn)運(yùn)用操作實(shí)驗(yàn)幾何得出圖形的旋轉(zhuǎn)的三條基本性質(zhì)教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課 堂 教 學(xué) 程 序 設(shè) 計(jì)設(shè)計(jì)意圖一、復(fù)習(xí)引入 (學(xué)生活動(dòng))老師口問,學(xué)生口答 1什么叫旋轉(zhuǎn)?什么叫旋轉(zhuǎn)中心?什么叫旋轉(zhuǎn)角? 2什么叫旋轉(zhuǎn)的對應(yīng)點(diǎn)? 3請獨(dú)立完成下面的題目如圖,O是六個(gè)正三角形的公共頂點(diǎn),正六邊形ABCDEF能否看做是某條線段繞O點(diǎn)旋轉(zhuǎn)若干次所形成的圖形? (老師點(diǎn)評)分析:能看做是一條邊(如線段AB)繞O點(diǎn),按照同一方法連續(xù)旋轉(zhuǎn)60°、120°、180°、240°、300°形成的 二、探索新知 上面的

8、解題過程中,能否得出什么結(jié)論,請回答下面的問題: 1A、B、C、D、E、F到O點(diǎn)的距離是否相等? 2對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角BOC、COD、DOE、EOF、FOA是否相等? 3旋轉(zhuǎn)前、后的圖形這里指三角形OAB、OBC、OCD、ODE、OEF、OFA全等嗎? 老師點(diǎn)評:(1)距離相等,(2)夾角相等,(3)前后圖形全等,那么這個(gè)是否有一般性?下面請看這個(gè)實(shí)驗(yàn) 請看我手里拿著的硬紙板,我在硬紙板上挖下一個(gè)三角形的洞,再挖一個(gè)點(diǎn)O作為旋轉(zhuǎn)中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個(gè)挖掉的三角形圖案(ABC),然后圍繞旋轉(zhuǎn)中心O轉(zhuǎn)動(dòng)硬紙板,在黑板上再描出這個(gè)挖掉的三角形(ABC),移去硬

9、紙板(分組討論)根據(jù)圖回答下面問題(一組推薦一人上臺(tái)說明) 1線段OA與OA,OB與OB,OC與OC有什么關(guān)系? 2AOA,BOB,COC有什么關(guān)系? 3ABC與ABC形狀和大小有什么關(guān)系? 老師點(diǎn)評:1OA=OA,OB=OB,OC=OC,也就是對應(yīng)點(diǎn)到旋轉(zhuǎn)中心相等 2AOA=BOB=COC,我們把這三個(gè)相等的角,即對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角稱為旋轉(zhuǎn)角 3ABC和ABC形狀相同和大小相等,即全等 綜合以上的實(shí)驗(yàn)操作和剛才作的(3),得出 (1)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等; (2)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角; (3)旋轉(zhuǎn)前、后的圖形全等例1如圖,ABC繞C點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)A的對應(yīng)

10、點(diǎn)為點(diǎn)D,試確定頂點(diǎn)B對應(yīng)點(diǎn)的位置,以及旋轉(zhuǎn)后的三角形分析:繞C點(diǎn)旋轉(zhuǎn),A點(diǎn)的對應(yīng)點(diǎn)是D點(diǎn),那么旋轉(zhuǎn)角就是ACD,根據(jù)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即BCB=ACD,又由對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,即CB=CB,就可確定B的位置,如圖所示 解:(1)連結(jié)CD (2)以CB為一邊作BCE,使得BCE=ACD (3)在射線CE上截取CB=CB 則B即為所求的B的對應(yīng)點(diǎn) (4)連結(jié)DB 則DBC就是ABC繞C點(diǎn)旋轉(zhuǎn)后的圖形 例2如圖,四邊形ABCD是邊長為1的正方形,且DE=,ABF是ADE的旋轉(zhuǎn)圖形 (1)旋轉(zhuǎn)中心是哪一點(diǎn)? (2)旋轉(zhuǎn)了多少度? (3)AF的長度是多少?(4)如果連結(jié)

11、EF,那么AEF是怎樣的三角形? 分析:由ABF是ADE的旋轉(zhuǎn)圖形,可直接得出旋轉(zhuǎn)中心和旋轉(zhuǎn)角,要求AF的長度,根據(jù)旋轉(zhuǎn)前后的對應(yīng)線段相等,只要求AE的長度,由勾股定理很容易得到ABF與ADE是完全重合的,所以它是直角三角形 解:(1)旋轉(zhuǎn)中心是A點(diǎn) (2)ABF是由ADE旋轉(zhuǎn)而成的 B是D的對應(yīng)點(diǎn) DAB=90°就是旋轉(zhuǎn)角 (3)AD=1,DE= AE= 對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點(diǎn) AF= (4)EAF=90°(與旋轉(zhuǎn)角相等)且AF=AE EAF是等腰直角三角形 三、鞏固練習(xí) 教材P58 練習(xí)1、2 四、應(yīng)用拓展例3如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L、M在AK的同旁,連接BK和DM,試用旋轉(zhuǎn)的思想說明線段BK與DM的關(guān)系 分析:要用旋轉(zhuǎn)的思想說明就是要用旋轉(zhuǎn)中心、旋轉(zhuǎn)角、對應(yīng)點(diǎn)的知識來說明 解:四邊形ABCD、四邊形AKLM是正方形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論