2021年北京市高考數(shù)學(xué)試題-[附答案]_第1頁
2021年北京市高考數(shù)學(xué)試題-[附答案]_第2頁
2021年北京市高考數(shù)學(xué)試題-[附答案]_第3頁
2021年北京市高考數(shù)學(xué)試題-[附答案]_第4頁
2021年北京市高考數(shù)學(xué)試題-[附答案]_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、內(nèi)裝訂線內(nèi)裝訂線學(xué)校:_姓名:_班級:_考號:_外裝訂線2021年北京市高考數(shù)學(xué)試題題號一二三四總分得分注意事項(xiàng):1答題前填寫好自己的姓名、班級、考號等信息2請將答案正確填寫在答題卡上評卷人得分一、單選題1已知集合,則(       )ABCD2在復(fù)平面內(nèi),復(fù)數(shù)滿足,則(       )ABCD3已知是定義在上的函數(shù),那么“函數(shù)在上單調(diào)遞增”是“函數(shù)在上的最大值為”的(       )A

2、充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件4某四面體的三視圖如圖所示,該四面體的表面積為(       )ABCD5若雙曲線離心率為,過點(diǎn),則該雙曲線的方程為(       )ABCD6中國共產(chǎn)黨黨旗黨徽制作和使用的若干規(guī)定指出,中國共產(chǎn)黨黨旗為旗面綴有金黃色黨徽圖案的紅旗,通用規(guī)格有五種.這五種規(guī)格黨旗的長(單位:cm)成等差數(shù)列,對應(yīng)的寬為(單位: cm),且長與寬之比都相等,已知,則A64B96C128D1607函數(shù)是A奇

3、函數(shù),且最大值為2B偶函數(shù),且最大值為2C奇函數(shù),且最大值為D偶函數(shù),且最大值為8某一時間段內(nèi),從天空降落到地面上的雨水,未經(jīng)蒸發(fā)、滲漏、流失而在水平面上積聚的深度,稱為這個時段的降雨量(單位:)24h降雨量的等級劃分如下:在綜合實(shí)踐活動中,某小組自制了一個底面直徑為200 mm,高為300 mm的圓錐形雨量器.若一次降雨過程中,該雨量器收集的24h的雨水高度是150 mm(如圖所示),則這24h降雨量的等級是A小雨B中雨C大雨D暴雨9已知直線(為常數(shù))與圓交于點(diǎn),當(dāng)變化時,若的最小值為2,則       ABCD10已知是

4、各項(xiàng)均為整數(shù)的遞增數(shù)列,且,若,則的最大值為(       )A9B10C11D12評卷人得分二、填空題11在的展開式中,常數(shù)項(xiàng)為_12若點(diǎn)關(guān)于軸對稱點(diǎn)為,寫出的一個取值為_13已知函數(shù),給出下列四個結(jié)論:若,恰 有2個零點(diǎn);存在負(fù)數(shù),使得恰有個1零點(diǎn);存在負(fù)數(shù),使得恰有個3零點(diǎn);存在正數(shù),使得恰有個3零點(diǎn)其中所有正確結(jié)論的序號是_評卷人得分三、雙空題14已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,垂直軸與于點(diǎn).若,則點(diǎn)的橫坐標(biāo)為_; 的面積為_15已知向量在正方形網(wǎng)格中的位置如圖所示若網(wǎng)格紙上小正方形的邊長為1,則 _;_.評卷人得

5、分四、解答題16在中,(1)求;(2)再從條件、條件、條件這三個條件中選擇一個作為已知,使存在且唯一確定,求邊上中線的長條件:;條件:的周長為;條件:的面積為;17如圖:在正方體中,為中點(diǎn),與平面交于點(diǎn)(1)求證:為的中點(diǎn);(2)點(diǎn)是棱上一點(diǎn),且二面角的余弦值為,求的值18在核酸檢測中, “k合1” 混采核酸檢測是指:先將k個人的樣本混合在一起進(jìn)行1次檢測,如果這k個人都沒有感染新冠病毒,則檢測結(jié)果為陰性,得到每人的檢測結(jié)果都為陰性,檢測結(jié)束:如果這k個人中有人感染新冠病毒,則檢測結(jié)果為陽性,此時需對每人再進(jìn)行1次檢測,得到每人的檢測結(jié)果,檢測結(jié)束.現(xiàn)對100人進(jìn)行核酸檢測,假設(shè)其中只有2人感

6、染新冠病毒,并假設(shè)每次檢測結(jié)果準(zhǔn)確.(I)將這100人隨機(jī)分成10組,每組10人,且對每組都采用“10合1”混采核酸檢測.(i)如果感染新冠病毒的2人在同一組,求檢測的總次數(shù);(ii)已知感染新冠病毒的2人分在同一組的概率為.設(shè)X是檢測的總次數(shù),求X的分布列與數(shù)學(xué)期望E(X).(II)將這100人隨機(jī)分成20組,每組5人,且對每組都采用“5合1”混采核酸檢測.設(shè)Y是檢測的總次數(shù),試判斷數(shù)學(xué)期望E(Y)與(I)中E(X)的大小.(結(jié)論不要求證明)19已知函數(shù)(1)若,求曲線在點(diǎn)處的切線方程;(2)若在處取得極值,求的單調(diào)區(qū)間,以及其最大值與最小值20已知橢圓一個頂 點(diǎn),以橢圓的四個頂點(diǎn)為頂點(diǎn)的四

7、邊形面積為(1)求橢圓E的方程;(2)過點(diǎn)P(0,-3)的直線l斜率為k的直線與橢圓E交于不同的兩點(diǎn)B,C,直線AB,AC分別與直線交y=-3交于點(diǎn)M,N,當(dāng)|PM|+|PN|15時,求k的取值范圍21設(shè)p為實(shí)數(shù).若無窮數(shù)列滿足如下三個性質(zhì),則稱為數(shù)列: ,且;,(1)如果數(shù)列的前4項(xiàng)為2,-2,-2,-1,那么是否可能為數(shù)列?說明理由;(2)若數(shù)列是數(shù)列,求;(3)設(shè)數(shù)列的前項(xiàng)和為.是否存在數(shù)列,使得恒成立?如果存在,求出所有的p;如果不存在,說明理由試卷第6頁,共6頁參考答案:1B【解析】【分析】結(jié)合題意利用并集的定義計(jì)算即可.【詳解】由題意可得:.故選:B.2D【解析】【分析】由題意利用

8、復(fù)數(shù)的運(yùn)算法則整理計(jì)算即可求得最終結(jié)果.【詳解】由題意可得:.故選:D.3A【解析】【分析】利用兩者之間的推出關(guān)系可判斷兩者之間的條件關(guān)系.【詳解】若函數(shù)在上單調(diào)遞增,則在上的最大值為,若在上的最大值為,比如,但在為減函數(shù),在為增函數(shù),故在上的最大值為推不出在上單調(diào)遞增,故“函數(shù)在上單調(diào)遞增”是“在上的最大值為”的充分不必要條件,故選:A.4A【解析】【分析】根據(jù)三視圖可得如圖所示的幾何體(三棱錐),根據(jù)三視圖中的數(shù)據(jù)可計(jì)算該幾何體的表面積.【詳解】根據(jù)三視圖可得如圖所示的幾何體-正三棱錐,其側(cè)面為等腰直角三角形,底面等邊三角形,由三視圖可得該正三棱錐的側(cè)棱長為1,故其表面積為,故選:A.5B

9、【解析】【分析】分析可得,再將點(diǎn)代入雙曲線的方程,求出的值,即可得出雙曲線的標(biāo)準(zhǔn)方程.【詳解】,則,則雙曲線的方程為,將點(diǎn)的坐標(biāo)代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B6C【解析】【分析】設(shè)等差數(shù)列公差為,求得,得到,結(jié)合黨旗長與寬之比都相等和,列出方程,即可求解.【詳解】由題意,五種規(guī)格黨旗的長(單位:cm)成等差數(shù)列,設(shè)公差為,因?yàn)?,可得,可得,又由長與寬之比都相等,且,可得,所以.故選:C.7D【解析】【分析】由函數(shù)奇偶性的定義結(jié)合三角函數(shù)的性質(zhì)可判斷奇偶性;利用二倍角公式結(jié)合二次函數(shù)的性質(zhì)可判斷最大值.【詳解】由題意,所以該函數(shù)為偶函數(shù),又,所以當(dāng)時,取最大值.故

10、選:D.8B【解析】【分析】計(jì)算出圓錐體積,除以圓面的面積即可得降雨量,即可得解.【詳解】由題意,一個半徑為的圓面內(nèi)的降雨充滿一個底面半徑為,高為的圓錐,所以積水厚度,屬于中雨.故選:B.9C【解析】【分析】先求得圓心到直線距離,即可表示出弦長,根據(jù)弦長最小值得出【詳解】由題可得圓心為,半徑為2,則圓心到直線的距離,則弦長為,則當(dāng)時,弦長取得最小值為,解得.故選:C.10C【解析】【分析】使數(shù)列首項(xiàng)、遞增幅度均最小,結(jié)合等差數(shù)列的通項(xiàng)及求和公式求得可能的最大值,然后構(gòu)造數(shù)列滿足條件,即得到的最大值【詳解】若要使n盡可能的大,則,遞增幅度要盡可能小,不妨設(shè)數(shù)列是首項(xiàng)為3,公差為1的等差數(shù)列,其前

11、n項(xiàng)和為,則,所以.對于,取數(shù)列各項(xiàng)為(,,則,所以n的最大值為11故選:C11【解析】【分析】利用二項(xiàng)式定理求出通項(xiàng)公式并整理化簡,然后令的指數(shù)為零,求解并計(jì)算得到答案.【詳解】的展開式的通項(xiàng)令,解得,故常數(shù)項(xiàng)為故答案為:.12(滿足即可)【解析】【分析】根據(jù)在單位圓上,可得關(guān)于軸對稱,得出求解.【詳解】與關(guān)于軸對稱,即關(guān)于軸對稱, ,則,當(dāng)時,可取的一個值為.故答案為:(滿足即可).13【解析】【分析】由可得出,考查直線與曲線的左、右支分別相切的情形,利用方程思想以及數(shù)形結(jié)合可判斷各選項(xiàng)的正誤.【詳解】對于,當(dāng)時,由,可得或,正確;對于,考查直線與曲線相切于點(diǎn),對函數(shù)求導(dǎo)得,由題意可得,解

12、得,所以,存在,使得只有一個零點(diǎn),正確;對于,當(dāng)直線過點(diǎn)時,解得,所以,當(dāng)時,直線與曲線有兩個交點(diǎn),若函數(shù)有三個零點(diǎn),則直線與曲線有兩個交點(diǎn),直線與曲線有一個交點(diǎn),所以,此不等式無解,因此,不存在,使得函數(shù)有三個零點(diǎn),錯誤;對于,考查直線與曲線相切于點(diǎn),對函數(shù)求導(dǎo)得,由題意可得,解得,所以,當(dāng)時,函數(shù)有三個零點(diǎn),正確.故答案為:.【點(diǎn)睛】思路點(diǎn)睛:已知函數(shù)的零點(diǎn)或方程的根的情況,求解參數(shù)的取值范圍問題的本質(zhì)都是研究函數(shù)的零點(diǎn)問題,求解此類問題的一般步驟:(1)轉(zhuǎn)化,即通過構(gòu)造函數(shù),把問題轉(zhuǎn)化成所構(gòu)造函數(shù)的零點(diǎn)問題;(2)列式,即根據(jù)函數(shù)的零點(diǎn)存在定理或結(jié)合函數(shù)的圖象列出關(guān)系式;(3)得解,即由

13、列出的式子求出參數(shù)的取值范圍14     5     【解析】【分析】根據(jù)焦半徑公式可求的橫坐標(biāo),求出縱坐標(biāo)后可求.【詳解】因?yàn)閽佄锞€的方程為,故且.因?yàn)椋獾?,故,所以,故答案為?;.15     0     3【解析】【分析】根據(jù)坐標(biāo)求出,再根據(jù)數(shù)量積的坐標(biāo)運(yùn)算直接計(jì)算即可.【詳解】以交點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系如圖所示:則,.故答案為:0;3.16(1);(2)答案不唯一,具體見解析【解析】【分析】(1)由正弦定理化邊為角即可

14、求解;(2)若選擇:由正弦定理求解可得不存在;若選擇:由正弦定理結(jié)合周長可求得外接圓半徑,即可得出各邊,再由余弦定理可求;若選擇:由面積公式可求各邊長,再由余弦定理可求.【詳解】(1),則由正弦定理可得,解得;(2)若選擇:由正弦定理結(jié)合(1)可得,與矛盾,故這樣的不存在;若選擇:由(1)可得,設(shè)的外接圓半徑為,則由正弦定理可得,則周長,解得,則,由余弦定理可得邊上的中線的長度為:;若選擇:由(1)可得,即,則,解得,則由余弦定理可得邊上的中線的長度為:.17(1)證明見解析;(2)【解析】【分析】(1)首先將平面進(jìn)行擴(kuò)展,然后結(jié)合所得的平面與直線的交點(diǎn)即可證得題中的結(jié)論;(2)建立空間直角坐

15、標(biāo)系,利用空間直角坐標(biāo)系求得相應(yīng)平面的法向量,然后解方程即可求得實(shí)數(shù)的值.【詳解】(1)如圖所示,取的中點(diǎn),連結(jié),由于為正方體,為中點(diǎn),故,從而四點(diǎn)共面,即平面CDE即平面,據(jù)此可得:直線交平面于點(diǎn),當(dāng)直線與平面相交時只有唯一的交點(diǎn),故點(diǎn)與點(diǎn)重合,即點(diǎn)為中點(diǎn).(2)以點(diǎn)為坐標(biāo)原點(diǎn),方向分別為軸,軸,軸正方向,建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為2,設(shè),則:,從而:,設(shè)平面的法向量為:,則:,令可得:,設(shè)平面的法向量為:,則:,令可得:,從而:,則:,整理可得:,故(舍去).【點(diǎn)睛】本題考查了立體幾何中的線面關(guān)系和二面角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,對于立體幾何中角的

16、計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.18(1)次;分布列見解析;期望為;(2)【解析】【分析】(1)由題設(shè)條件還原情境,即可得解;求出X的取值情況,求出各情況下的概率,進(jìn)而可得分布列,再由期望的公式即可得解;(2)求出兩名感染者在一組的概率,進(jìn)而求出,即可得解.【詳解】(1)對每組進(jìn)行檢測,需要10次;再對結(jié)果為陽性的組每個人進(jìn)行檢測,需要10次;所以總檢測次數(shù)為20次;由題意,可以取20,30,則的分布列:所以;(2)由題意,可以取25,30,兩名感染者在同一組的概率為,不在同一組的概率為,則.19(1);(2)函數(shù)的增區(qū)間為、,單調(diào)遞減區(qū)間為,最

17、大值為,最小值為.【解析】【分析】(1)求出、的值,利用點(diǎn)斜式可得出所求切線的方程;(2)由可求得實(shí)數(shù)的值,然后利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,由此可得出結(jié)果.【詳解】(1)當(dāng)時,則,此時,曲線在點(diǎn)處的切線方程為,即;(2)因?yàn)?,則,由題意可得,解得,故,列表如下:增極大值減極小值增所以,函數(shù)的增區(qū)間為、,單調(diào)遞減區(qū)間為.當(dāng)時,;當(dāng)時,.所以,.20(1);(2)【解析】【分析】(1)根據(jù)橢圓所過的點(diǎn)及四個頂點(diǎn)圍成的四邊形的面積可求,從而可求橢圓的標(biāo)準(zhǔn)方程.(2)設(shè),求出直線的方程后可得的橫坐標(biāo),從而可得,聯(lián)立直線的方程和橢圓的方程,結(jié)合韋達(dá)定理化簡,從而可求的范圍,注意判別式的要求.【詳解】

18、(1)因?yàn)闄E圓過,故,因?yàn)樗膫€頂點(diǎn)圍成的四邊形的面積為,故,即,故橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè),因?yàn)橹本€的斜率存在,故,故直線,令,則,同理.直線,由可得,故,解得或.又,故,所以又故即,綜上,或.21(1)不可以是數(shù)列;理由見解析;(2);(3)存在;【解析】【分析】(1)由題意考查的值即可說明數(shù)列不是數(shù)列;(2)由題意首先確定數(shù)列的前4項(xiàng),然后討論計(jì)算即可確定的值;(3)構(gòu)造數(shù)列,易知數(shù)列是的,結(jié)合(2)中的結(jié)論求解不等式即可確定滿足題意的實(shí)數(shù)的值.【詳解】(1)因 為 所以,因 為所 以所以數(shù)列,不可能是數(shù)列.(2)性質(zhì),由性質(zhì),因此或,或,若,由性質(zhì)可知,即或,矛盾;若,由有,矛盾.因此只能是.又因?yàn)榛?,所以?若,則,不滿足,舍去.當(dāng),則前四項(xiàng)為:0,0,0,1,下面用數(shù)學(xué)歸納法證明:當(dāng)時,經(jīng)驗(yàn)證命題成立,假設(shè)當(dāng)時命題成立,當(dāng)時:若,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論