大學(xué)物理習(xí)題答案第八章_第1頁
大學(xué)物理習(xí)題答案第八章_第2頁
大學(xué)物理習(xí)題答案第八章_第3頁
大學(xué)物理習(xí)題答案第八章_第4頁
大學(xué)物理習(xí)題答案第八章_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、    習(xí)題解答8-2 在一個(gè)容器內(nèi)盛有理想氣體,而容器的兩側(cè)分別與沸水和冰相接觸(熱接觸)。顯然,當(dāng)沸水和冰的溫度都保持不變時(shí),容器內(nèi)理想氣體的狀態(tài)也不隨時(shí)間變化。問這時(shí)容器內(nèi)理想氣體的狀態(tài)是否是平衡態(tài)?為什么?解 不是平衡態(tài),因?yàn)槠胶鈶B(tài)的條件有二:一是系統(tǒng)的宏觀性質(zhì)不隨時(shí)間變化,二是沒有外界的影響和作用。題目所說的情況不滿足第二條。8-3 氧氣瓶的容積是32 dm3 ,壓強(qiáng)為130 atm,規(guī)定瓶內(nèi)氧氣的壓強(qiáng)降至10 atm時(shí),應(yīng)停止使用并必須充氣,以免混入其他氣體。今有一病房每天需用1.0 atm的氧氣400 dm3 ,問一瓶氧氣可用幾天?解 當(dāng)壓

2、強(qiáng)為 、體積為 時(shí),瓶內(nèi)氧氣的質(zhì)量M1為 .當(dāng)壓強(qiáng)降至 、體積仍為 時(shí),瓶內(nèi)氧氣的質(zhì)量M2為.病房每天用壓強(qiáng)為 、體積為 的氧氣質(zhì)量Dm為.以瓶氧氣可用n天: .8-4 在一個(gè)容積為10 dm3 的容器中貯有氫氣,當(dāng)溫度為7時(shí),壓強(qiáng)為50 atm。由于容器漏氣,當(dāng)溫度升至17時(shí),壓強(qiáng)仍為50 atm,求漏掉氫氣的質(zhì)量。解 漏氣前氫氣的質(zhì)量為M1 , 壓強(qiáng)為 , 體積為 , 溫度為 ,于是M1可以表示為.漏氣后氫氣的質(zhì)量為M2, 壓強(qiáng)為 , 體積為 , 溫度為 , 于是M2可以表示為.所以漏掉氫氣的質(zhì)量為 .計(jì)算中用到了氫氣的摩爾質(zhì)量 。8-5 氣缸中盛有可視為理想

3、氣體的某種氣體,當(dāng)溫度為T1 = 200 K時(shí),壓強(qiáng)和摩爾體積分別為p1 和Vm1 。如果將氣缸加熱,使系統(tǒng)中氣體的壓強(qiáng)和體積同時(shí)增大,在此過程中,氣體的壓強(qiáng)p和摩爾體積Vm滿足關(guān)系p = aVm,其中a為常量。(1)求常量a;(2)當(dāng)摩爾體積增大到2Vm1 時(shí),求系統(tǒng)的溫度。解 (1)  1 mol理想氣體的物態(tài)方程可以表示為,當(dāng)溫度為T1 (= 200 K)、壓強(qiáng)為p1 和摩爾體積為Vm1時(shí),上式應(yīng)寫為 .  (1)升溫過程滿足,在溫度為T1 時(shí),上式應(yīng)寫為,  (2)將式(2)代入式(1),得 . (3)由上式可以解得或 .(2

4、)根據(jù)式(3)可以得到,取 ,代入上式,得, (4)將式(4)與式(3)聯(lián)立,可以求得.8-8 證明式(8-9)。解 的平均值 定義為 .在以下的證明中用到上面的關(guān)系。下面的關(guān)系顯然是成立的:,.將以上N個(gè)式子相加并除以粒子總數(shù)N,得,即 .證畢。8-9 容器內(nèi)貯有氧氣,如果壓強(qiáng)為1.0 atm,溫度為27,求:(1)單位體積內(nèi)的分子數(shù)n;(2)分子間的平均距離 ;(3)容器中氧氣的密度r;(4)分子的平均平動(dòng)動(dòng)能 。解 (1)單位體積內(nèi)的分子數(shù)n .(2)分子間的平均距離.(3)容器中氧氣的密度r.(4)分子的平均平動(dòng)動(dòng)能 .8-10 容器內(nèi)盛有1.50 mol

5、氮?dú)?,其分子熱運(yùn)動(dòng)動(dòng)能的總和為9.63´103 J,求容器內(nèi)氮?dú)獾臏囟取=?設(shè)系統(tǒng)內(nèi)氣體的溫度為T,分子熱運(yùn)動(dòng)動(dòng)能的總和,就是3個(gè)平動(dòng)、2個(gè)轉(zhuǎn)動(dòng)和1個(gè)振動(dòng)自由度上平均動(dòng)能之和,即,所以.8-11 在一個(gè)容積為10.0 dm3 的密封容器內(nèi)盛有50.0 g氬氣,溫度為180,容器以200 m×s-1 的速率作勻速直線運(yùn)動(dòng),如果容器突然停止,分子定向運(yùn)動(dòng)的動(dòng)能全部轉(zhuǎn)化為熱運(yùn)動(dòng)動(dòng)能。問當(dāng)系統(tǒng)達(dá)到平衡態(tài)時(shí),容器內(nèi)氬氣的溫度和壓強(qiáng)各增大多少?解 整體作定向運(yùn)動(dòng)的動(dòng)能,就是全部氬分子共同作定向運(yùn)動(dòng)的動(dòng)能:.全部轉(zhuǎn)變?yōu)闅宸肿訜徇\(yùn)動(dòng)動(dòng)能,氣體的溫度將升高DT,于是.氬分子是單原子分子,只有

6、3個(gè)平動(dòng)自由度,即i = 3 。代入上式就可以求得DT.根據(jù)物態(tài)方程,可得.由上式可解得系統(tǒng)壓強(qiáng)的增加Dp .8-12 分別計(jì)算在300 K時(shí)1.00 mol氫氣和1.00 mol氦氣的內(nèi)能。解 1.00 mol氣體的內(nèi)能可以表示為.氫氣是雙原子分子氣體,理論上有6個(gè)自由度(t = 3, r =2, s = 1),內(nèi)能為.而實(shí)驗(yàn)表明在室溫下氫分子的振動(dòng)自由度不被激發(fā),所以內(nèi)能應(yīng)為.氦氣分子是單原子分子,i = t = 3, r = 0, s = 0, 代入內(nèi)能表達(dá)式,得.8-13 將10 g氧氣(看作理想氣體)從20加熱到50,內(nèi)能增大多少?解 氧氣分子是雙原子分子,t = 3, r

7、 = 2, s = 1, 內(nèi)能的增加為.8-14 某種三原子分子氣體被看作理想氣體,試寫出分子平均平動(dòng)動(dòng)能、平均轉(zhuǎn)動(dòng)動(dòng)能和平均振動(dòng)動(dòng)能的表達(dá)式。解 對(duì)于三原子分子,平動(dòng)自由度t = 3,轉(zhuǎn)動(dòng)自由度r = 3,振動(dòng)自由度s = 3。分子的平均平動(dòng)動(dòng)能為,分子的平均轉(zhuǎn)動(dòng)動(dòng)能為,分子的平均振動(dòng)動(dòng)能為.8-16 說明以下各式的物理意義: ; ; ; ; ; 。解 (1)  表示在dv范圍內(nèi)的分子數(shù)占分子總數(shù)N的比率;(2)  = dN 表示在dv范圍內(nèi)的分子數(shù);(3)  表示在v1 v2 速率間隔內(nèi)的分子數(shù)占分子總數(shù)N的比率;(4)  表示在v1 v2 速率間隔

8、內(nèi)的分子數(shù);(5)  表示在v1 v2 速率間隔內(nèi)的分子對(duì)平均速率的貢獻(xiàn);(6)  表示在v1 v2 速率間隔內(nèi)分子對(duì)速率平方平均值的貢獻(xiàn)。8-17 求溫度為300 K時(shí)氧分子的最概然速率、平均速率和方均根速率,并分別闡明這三種速率的物理意義。解 最概然速率 ,表示系統(tǒng)中在此值附近的速率間隔內(nèi)的分子所占比率為最大。平均速率,表示系統(tǒng)中分子速率的平均值。方均根速率,表示系統(tǒng)中分子速率平方的平均值的大小。8-18 求速率處于vp與1.01vp之間的氣體分子數(shù)占總分子數(shù)的百分比。解 速率分布函數(shù)可以具體寫為.將 、 和 代入上式,得,并且.由上式得,所以. (1)當(dāng) 、

9、 時(shí),,將以上兩式代入式(1),得.8-19 求在標(biāo)準(zhǔn)狀態(tài)下1.00 cm3 氮?dú)庵兴俾试?00 m×s-1 到501 m×s-1 之間的分子數(shù)(可將dv近似地取為1 m×s-1 )。解 先求在0時(shí)1.00 cm3 中氮?dú)獾獨(dú)獾姆肿訑?shù)N:.將 , , 以及 代入上式,得8-20 系統(tǒng)中總共有N個(gè)分子,分別求速率高于最概然速率和低于最概然速率的分子數(shù)占總分子數(shù)的百分?jǐn)?shù)。解 根據(jù)題8-18的結(jié)果,其中 ,  .分子速率低于最概然速率vp ,對(duì)應(yīng)于 ,所以,速率低于最概然速率的分子數(shù)占總分子數(shù)的比率可以表示為.為求解上式,令 , ,代入上式,得.上式

10、可用分部積分法求解,為此令 , , 則上式變?yōu)?查表得,于是得.即速率低于最概然速率的分子數(shù)占總分子數(shù)的比率為42.8%,而速率高于最概然速率的分子數(shù)占總分子數(shù)的比率為1 - 42.8% = 57.2% 。8-21 已知氧的范德瓦耳斯常量b = 31.83´10-6 m3 ×mol-1 ,試估計(jì)氧分子的半徑。解 我們已經(jīng)知道范德瓦耳斯常量b大約等于1 mol氣體分子自身體積總和的4倍,所以.由上式可以解得氧分子的直徑,為.8-22 二氧化碳和氫的范德瓦耳斯常量a分別為3.59´10-6 atm×m6×mol-2 和0.244´10-6

11、 atm×m6×mol-2,求體積為22.4 dm3 的兩種氣體的內(nèi)壓強(qiáng)pi。解 22.4 dm3正好是在標(biāo)準(zhǔn)狀態(tài)下的摩爾體積,氣體的內(nèi)壓強(qiáng)應(yīng)表示為.對(duì)于二氧化碳: .對(duì)于氫:.8-23 已知氧的范德瓦耳斯常量a = 1.36´10-6 atm×m6×mol-2,b = 31.8 ´ 10-6 m3 ×mol-1 ,求(1)壓強(qiáng)為100 atm、密度為100 g×dm-3 的氧氣系統(tǒng)的溫度;(2)氧的臨界壓強(qiáng)pK 和臨界溫度TK 。解 (1)范德瓦爾斯方程為,用體積V除以上式,得,其中 是氣體的密度,為已

12、知量,代入上式得.由上式解出T,得.(2)范德瓦爾斯常量可以表示為, (1). (2)由式(2)得 , (3)將式(3)代入式(1),得.由上式可以解得臨界溫度.將TK的表達(dá)式代入式(3),得.8-24 一定量的理想氣體,分別在體積不變和壓強(qiáng)不變的條件下升溫,分子的碰撞頻率和平均自由程將怎樣變化?解 當(dāng)體積不變時(shí):,由上式可見,在N和V一定的情況下, ,碰撞頻率隨溫度上升而增大。平均自由程可以表示為,可見,在N和V一定的情況下,平均自由程與溫度無關(guān)。當(dāng)壓強(qiáng)不變時(shí):,上式表明,在壓強(qiáng)不變的情況下, ,碰撞頻率隨溫度上升而減小。 平均自由程可以表示為,所以,在壓強(qiáng)不變時(shí), ,平均自由程隨

13、溫度上升而增大。8-25 設(shè)氮分子的有效直徑為3.8´10-10 m,求:(1)在標(biāo)準(zhǔn)狀態(tài)下的碰撞頻率和平均自由程;(2)在溫度不變而壓強(qiáng)降為2.0´10-4 Pa時(shí),碰撞頻率和平均自由程。解 (1)標(biāo)準(zhǔn)狀態(tài) 、 ,代入碰撞頻率和平均自由程的表達(dá)式,分別得到,.(2)將 、 代入以上兩式,可以分別求得 ,.也可以這樣來處理:,即.將已知各量代入上式,可以求得 。對(duì)于平均自由程也可以作同樣的處理,即,所以.8-26 當(dāng)溫度為27時(shí),電子管內(nèi)的真空度為1.0´10-5 mmHg,殘余氣體分子的有效直徑為3.0´10-10 m,求:(1)單位體積中的

14、分子數(shù);(2)平均自由程和碰撞頻率。解 (1)單位體積中的分子數(shù).(2)平均自由程.碰撞頻率為.8-28 由實(shí)驗(yàn)測得在標(biāo)準(zhǔn)狀態(tài)下氦氣的黏度為h = 1.89´10-5Pa×s,求:(1)平均自由程度;(2)氦原子的有效直徑。解 (1)根據(jù)公式,只要求出其中的 和 ,代入上式就可以算出平均自由程。,.所以.(2)氦原子的有效直徑:根據(jù),可以求得氦原子的有效直徑為.8-29 已知氦和氬的原子量分別為4.00和39.95,它們?cè)跇?biāo)準(zhǔn)狀態(tài)下的黏度分別為hHe =1.89´10-5Pa×s和hAr =2.10´10-5Pa×s,求:(1)氦和氬

15、的熱導(dǎo)率之比 k(He)/k(Ar);(2)氦和氬的擴(kuò)散系數(shù)之比 D(He)/D(Ar)。解 (1)因?yàn)?所以.式中 是比熱, 是摩爾熱容,m是摩爾質(zhì)量,它們之間有如下關(guān)系.He和Ar都是單原子氣體,所以.故有.(2)擴(kuò)散系數(shù)可以表示為.于是有.8-33 組成晶體的原子之間的相互作用勢能u(r)可以用式(8-66)表示,并可以描繪成圖8-24所示的圖線,試證明此式中m > n,并說明此結(jié)果的物理涵義。解 題目要求證明在下式(1)中,。由書中圖8-24(a)可以看到,u (r)存在極小值,此極小值對(duì)應(yīng)于 。也就是說在 處滿足下面兩個(gè)關(guān)系:, (2).  (3)將式(1)代入式(2

16、),得,由此解得.(4)由式(3)得,可化為.將式(4)代入上式,得,即.要求上式左邊大于零,就必須有 .這表明,隨原子間距的增大,斥力勢要比引力勢衰減的更快,也就是說斥力作用與引力作用相比更具有短程性。8-36 在深為h = 2.0 m的水池底部有一個(gè)直徑為d = 5.0´10-5 m的氣泡,當(dāng)它等溫上升到接近水面時(shí),直徑變?yōu)槎啻??已知水的表面張力系?shù)s = 7.3´10-2 N×m-1 。解 設(shè)水泡到達(dá)水面時(shí)的半徑為R1,在等溫的情況下,應(yīng)滿足,或 .式中p1、V1分別是氣泡在池底時(shí)的內(nèi)部的壓強(qiáng)和體積,p2、V2分別是氣泡接近水面時(shí)的內(nèi)部的

17、壓強(qiáng)和體積。于是可以列出下面的方程式,簡化為.由上式可以解出氣泡接近水面時(shí)的直徑,為.8-37 當(dāng)把毛細(xì)管插入水杯時(shí),毛細(xì)管中的水面要上升。若對(duì)于某一直徑的毛細(xì)管,水面上升的高度為h,問當(dāng)毛細(xì)管本身高出杯中水面的高度小于h時(shí),水是否會(huì)從毛細(xì)管中溢出?為什么?解 不會(huì)溢出,因?yàn)榇藭r(shí)水在毛細(xì)管上端雖然仍形成凹球面,不過其曲率半徑比原來毛細(xì)管本身高出杯中水面的高度大于h時(shí)的曲率半徑要大一些,因而所產(chǎn)生的附加壓強(qiáng)比原來要小一些,只能使水達(dá)到毛細(xì)管的上端。圖8-78-38 如圖8-7所示,在半徑為r = 3.0´10-4 m的毛細(xì)管中注水,一部分水在管的下部形成一水柱,水柱的下端面的形狀可以認(rèn)為是半徑為R = 3.0´10-3 m的球面的一部分。求管中水柱的高度h。已知水的表面張力系數(shù)s = 7.3´10-2 N×m-1 。解 水柱不會(huì)落下來,是由于水柱上、下兩端形成兩個(gè)球面,從而產(chǎn)生了附加壓強(qiáng)的緣故。水柱下端面施于水柱向上的力FA與水柱上端面施于水柱向下的力FB和水柱自身重量mg相平衡,即, (1)式中的每一項(xiàng)都包含毛細(xì)管截面積這個(gè)因子,可以約去,于是式(1)變成下面的形式,  (2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論