




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第三章第三章剛體的定軸轉(zhuǎn)動剛體的定軸轉(zhuǎn)動3-0 3-0 第三章教學(xué)基本要求第三章教學(xué)基本要求3-1 3-1 剛體定軸轉(zhuǎn)動的動能定理和轉(zhuǎn)動定律剛體定軸轉(zhuǎn)動的動能定理和轉(zhuǎn)動定律3-2 3-2 定軸轉(zhuǎn)動的動量矩定理和動量矩守恒定律定軸轉(zhuǎn)動的動量矩定理和動量矩守恒定律一、掌握描述剛體定軸轉(zhuǎn)動的角位移、角速度和角加速度等概念一、掌握描述剛體定軸轉(zhuǎn)動的角位移、角速度和角加速度等概念. .二、掌握力對固定轉(zhuǎn)軸的力矩的計算方法,了解轉(zhuǎn)動慣量的概二、掌握力對固定轉(zhuǎn)軸的力矩的計算方法,了解轉(zhuǎn)動慣量的概 念念 (72(72學(xué)時不要求用積分計算轉(zhuǎn)動慣量學(xué)時不要求用積分計算轉(zhuǎn)動慣量) .) .三、理解剛體定軸轉(zhuǎn)動的動能
2、定理和剛體服從質(zhì)點組的功能轉(zhuǎn)三、理解剛體定軸轉(zhuǎn)動的動能定理和剛體服從質(zhì)點組的功能轉(zhuǎn)換關(guān)系換關(guān)系. .四、理解剛體定軸轉(zhuǎn)動定律四、理解剛體定軸轉(zhuǎn)動定律. .五、理解角動量的概念五、理解角動量的概念, , 理解剛體定軸轉(zhuǎn)動的角動量守恒定律理解剛體定軸轉(zhuǎn)動的角動量守恒定律. .七、能綜合應(yīng)用轉(zhuǎn)動定律和牛頓運動定律及質(zhì)點、剛體定軸轉(zhuǎn)七、能綜合應(yīng)用轉(zhuǎn)動定律和牛頓運動定律及質(zhì)點、剛體定軸轉(zhuǎn)動的運動學(xué)公式計算質(zhì)點剛體系統(tǒng)的簡單動力學(xué)問題動的運動學(xué)公式計算質(zhì)點剛體系統(tǒng)的簡單動力學(xué)問題. .六、會計算力矩的功六、會計算力矩的功 (72(72學(xué)時只限于恒定力矩的功學(xué)時只限于恒定力矩的功) ) 、定軸轉(zhuǎn)動、定軸轉(zhuǎn)動
3、剛體的轉(zhuǎn)動動能和對軸的角動量剛體的轉(zhuǎn)動動能和對軸的角動量. . 八、能綜合應(yīng)用守恒定律求解質(zhì)點剛體系統(tǒng)的簡單動力學(xué)問題八、能綜合應(yīng)用守恒定律求解質(zhì)點剛體系統(tǒng)的簡單動力學(xué)問題. . 明確選擇分析解決質(zhì)點剛體系統(tǒng)力學(xué)問題規(guī)律時的優(yōu)先考慮順序明確選擇分析解決質(zhì)點剛體系統(tǒng)力學(xué)問題規(guī)律時的優(yōu)先考慮順序. . 預(yù)習(xí)要點預(yù)習(xí)要點注意描述剛體定軸轉(zhuǎn)動的運動學(xué)方法注意描述剛體定軸轉(zhuǎn)動的運動學(xué)方法.閱讀附錄閱讀附錄1中矢量乘法中矢量乘法. 力對轉(zhuǎn)軸的力矩如何計算力對轉(zhuǎn)軸的力矩如何計算?領(lǐng)會剛體定軸轉(zhuǎn)動的動能定理的意義領(lǐng)會剛體定軸轉(zhuǎn)動的動能定理的意義. 注意區(qū)分平注意區(qū)分平動動能和轉(zhuǎn)動動能的計算式動動能和轉(zhuǎn)動動能的
4、計算式. 注意力矩的功的計算注意力矩的功的計算方法方法.轉(zhuǎn)動慣量的定義是什么轉(zhuǎn)動慣量的定義是什么? 轉(zhuǎn)動慣量與哪些因素有關(guān)轉(zhuǎn)動慣量與哪些因素有關(guān)?1. 剛體定軸轉(zhuǎn)動定律的內(nèi)容及數(shù)學(xué)表達(dá)式如何剛體定軸轉(zhuǎn)動定律的內(nèi)容及數(shù)學(xué)表達(dá)式如何? 注意注意它的應(yīng)用方法它的應(yīng)用方法. 剛體剛體:在外力作用下,形狀和大小都不發(fā)生變:在外力作用下,形狀和大小都不發(fā)生變化的物體(任意兩質(zhì)點間距離保持不變的特殊質(zhì)點化的物體(任意兩質(zhì)點間距離保持不變的特殊質(zhì)點組)組).剛體的運動形式:平動、轉(zhuǎn)動剛體的運動形式:平動、轉(zhuǎn)動 . 平動:剛體中所有點的運動軌跡都保持完全相同平動:剛體中所有點的運動軌跡都保持完全相同. 轉(zhuǎn)動:剛
5、體中所有的點都繞同一直線作圓周運動轉(zhuǎn)動:剛體中所有的點都繞同一直線作圓周運動. 轉(zhuǎn)動分定軸轉(zhuǎn)動和非定軸轉(zhuǎn)動轉(zhuǎn)動分定軸轉(zhuǎn)動和非定軸轉(zhuǎn)動. 轉(zhuǎn)軸不動轉(zhuǎn)軸不動, 剛體繞轉(zhuǎn)軸運動叫剛體的定軸轉(zhuǎn)動;剛體繞轉(zhuǎn)軸運動叫剛體的定軸轉(zhuǎn)動;垂直于轉(zhuǎn)軸的平面叫轉(zhuǎn)動平面垂直于轉(zhuǎn)軸的平面叫轉(zhuǎn)動平面.)()(ttt角位移角位移)(t 角坐標(biāo)角坐標(biāo)tttddlim0角速度角速度角加速度角加速度tddxz)(tO 定軸定軸(Oz軸軸)條件下,由條件下,由Oz軸正向俯視,逆時針轉(zhuǎn)軸正向俯視,逆時針轉(zhuǎn)向的向的 取正,順時針取負(fù)取正,順時針取負(fù).、Pz*OFdFrMsinMFrd( :力臂力臂)d 剛體繞剛體繞Oz軸旋轉(zhuǎn)軸旋轉(zhuǎn),
6、O為軸為軸與轉(zhuǎn)動平面的交點,力與轉(zhuǎn)動平面的交點,力 作用作用在剛體上點在剛體上點 P , 且在轉(zhuǎn)動平面且在轉(zhuǎn)動平面內(nèi)內(nèi), 為由點為由點O 到力的作用點到力的作用點 P 的位矢的位矢. Fr 對轉(zhuǎn)軸對轉(zhuǎn)軸z的力矩的力矩 F1. 力矩力矩 MsFrFWdcosdd21dMW力矩的功力矩的功2. 力矩作功力矩作功 orvFxvFOxrtFrdddsindFrM1. 1. 轉(zhuǎn)動動能轉(zhuǎn)動動能2ivim21剛體內(nèi)部質(zhì)量為剛體內(nèi)部質(zhì)量為 的質(zhì)量元的速度為的質(zhì)量元的速度為 imirivniiirm122)(212222211k212121nnmmmEvvvniim1212iv動能為動能為剛體定軸轉(zhuǎn)動的總能量(
7、轉(zhuǎn)動動能)剛體定軸轉(zhuǎn)動的總能量(轉(zhuǎn)動動能)ni2ii)(rm121niiirmJ12定義定義轉(zhuǎn)動慣量轉(zhuǎn)動慣量niiirm12相當(dāng)于描寫轉(zhuǎn)動慣性的物理量相當(dāng)于描寫轉(zhuǎn)動慣性的物理量. .2. 2. 轉(zhuǎn)動慣量轉(zhuǎn)動慣量單位:單位:kg m2(千克(千克米米2).2k21JE剛體定軸轉(zhuǎn)動動能計算式:剛體定軸轉(zhuǎn)動動能計算式: 對質(zhì)量連續(xù)分布的剛體,任取質(zhì)量元對質(zhì)量連續(xù)分布的剛體,任取質(zhì)量元dm,其到軸其到軸的距離為的距離為r,則,則轉(zhuǎn)動慣量轉(zhuǎn)動慣量mrJd2與平動動能與平動動能2k21vmEniiirmE122k)(21比較轉(zhuǎn)動動能比較轉(zhuǎn)動動能lrrJ02d32/02121d2lrrJl231ml 設(shè)棒的
8、線密度為設(shè)棒的線密度為 ,取一距離轉(zhuǎn)軸,取一距離轉(zhuǎn)軸 OO 為為 處處的質(zhì)量元的質(zhì)量元 rr,mddrrmrJddd22 求質(zhì)量為求質(zhì)量為m、長為、長為l的均勻細(xì)長棒,對通過棒中心的均勻細(xì)長棒,對通過棒中心和和過端點并與棒垂直的兩軸的轉(zhuǎn)動慣量過端點并與棒垂直的兩軸的轉(zhuǎn)動慣量.lO Ordrrd2l2lO O2121ml如轉(zhuǎn)軸過端點垂直于棒如轉(zhuǎn)軸過端點垂直于棒 剛體的轉(zhuǎn)動慣量與剛體的剛體的轉(zhuǎn)動慣量與剛體的質(zhì)量質(zhì)量m、剛體的、剛體的質(zhì)量分布質(zhì)量分布和和轉(zhuǎn)軸的位置轉(zhuǎn)軸的位置有關(guān)有關(guān).3. 3. 轉(zhuǎn)動慣量的計算舉例轉(zhuǎn)動慣量的計算舉例4. 4. 部分均勻剛體的轉(zhuǎn)動慣量部分均勻剛體的轉(zhuǎn)動慣量 薄圓盤轉(zhuǎn)軸通
9、過薄圓盤轉(zhuǎn)軸通過中心與盤面垂直中心與盤面垂直221mrJ2r球體轉(zhuǎn)軸沿直徑球體轉(zhuǎn)軸沿直徑522mrJl 細(xì)棒轉(zhuǎn)軸通過細(xì)棒轉(zhuǎn)軸通過中心與棒垂直中心與棒垂直122mlJl 細(xì)棒轉(zhuǎn)軸通過細(xì)棒轉(zhuǎn)軸通過端點與棒垂直端點與棒垂直32mlJ 剛體是其內(nèi)任兩質(zhì)點間距離不變的質(zhì)點組,剛體剛體是其內(nèi)任兩質(zhì)點間距離不變的質(zhì)點組,剛體做定軸轉(zhuǎn)動時,質(zhì)點間無相對位移,質(zhì)點間內(nèi)力不作做定軸轉(zhuǎn)動時,質(zhì)點間無相對位移,質(zhì)點間內(nèi)力不作功,外力功為其力矩的功;并且剛體無移動,動能的功,外力功為其力矩的功;并且剛體無移動,動能的變化只有定軸轉(zhuǎn)動動能的變化變化只有定軸轉(zhuǎn)動動能的變化.由質(zhì)點組動能定理由質(zhì)點組動能定理0kkinexEE
10、WW, 0inW0dexMW20k02k21,21JEJE 合外力矩合外力矩對繞定軸轉(zhuǎn)動的剛體所作的功等于剛體對繞定軸轉(zhuǎn)動的剛體所作的功等于剛體轉(zhuǎn)動動能的轉(zhuǎn)動動能的增量增量.得剛體定軸轉(zhuǎn)動的動能定理得剛體定軸轉(zhuǎn)動的動能定理2022121d0JJMW注意注意: 2. 剛體的定軸轉(zhuǎn)動的動能應(yīng)用剛體的定軸轉(zhuǎn)動的動能應(yīng)用 計算計算.2k21JE1. 如果剛體在運動過程中還有勢能的變化,可用質(zhì)點如果剛體在運動過程中還有勢能的變化,可用質(zhì)點組的功能原理和機械能轉(zhuǎn)換與守恒定律討論組的功能原理和機械能轉(zhuǎn)換與守恒定律討論. 總之,剛總之,剛體作為特殊的質(zhì)點組,它服從質(zhì)點組的功能轉(zhuǎn)換關(guān)系體作為特殊的質(zhì)點組,它服從
11、質(zhì)點組的功能轉(zhuǎn)換關(guān)系.21222121d21JJMW由動能定理:由動能定理:取微分形式:取微分形式:d)21(dd2JJM兩邊除兩邊除dtdtdddJtM由于由于ttdd,dd故得故得JtJMdd 剛體定軸轉(zhuǎn)動定律剛體定軸轉(zhuǎn)動定律:剛體作定軸轉(zhuǎn)動時,:剛體作定軸轉(zhuǎn)動時,合外力合外力矩矩等于剛體的轉(zhuǎn)動慣量與角加速度的等于剛體的轉(zhuǎn)動慣量與角加速度的乘積乘積. . 如果在一個物體系中,有的物體作平動,有的物如果在一個物體系中,有的物體作平動,有的物體作定軸轉(zhuǎn)動,處理此問題仍然可以應(yīng)用隔離法體作定軸轉(zhuǎn)動,處理此問題仍然可以應(yīng)用隔離法. . 但但應(yīng)分清哪些物體作平動,哪些物體作轉(zhuǎn)動應(yīng)分清哪些物體作平動,
12、哪些物體作轉(zhuǎn)動. . 把平動物把平動物體隔離出來,按牛頓第二定律寫出其動力學(xué)方程;把體隔離出來,按牛頓第二定律寫出其動力學(xué)方程;把定軸轉(zhuǎn)動物體隔離出來,按轉(zhuǎn)動定律寫出其動力學(xué)方定軸轉(zhuǎn)動物體隔離出來,按轉(zhuǎn)動定律寫出其動力學(xué)方程程. . 有時還需要利用質(zhì)點及剛體定軸轉(zhuǎn)動的運動學(xué)公有時還需要利用質(zhì)點及剛體定軸轉(zhuǎn)動的運動學(xué)公式補充方程,然后對這些方程綜合求解式補充方程,然后對這些方程綜合求解. .例例: :一輕繩跨過一軸承光滑的定滑輪,繩的兩端分別懸一輕繩跨過一軸承光滑的定滑輪,繩的兩端分別懸有質(zhì)量為有質(zhì)量為m1和和m2的物體,滑輪可視為均質(zhì)圓盤,的物體,滑輪可視為均質(zhì)圓盤, 質(zhì)量質(zhì)量為為m,半徑為,
13、半徑為r,繩子,繩子不可伸長而且與滑輪之間無相對不可伸長而且與滑輪之間無相對滑動滑動. .求求物體加速度、滑輪轉(zhuǎn)動的角加速度和繩子的張物體加速度、滑輪轉(zhuǎn)動的角加速度和繩子的張力力. .受力圖如下,受力圖如下,T1Fgm1T1Fa12mm設(shè)設(shè)T2Fgm2aT2Formm1m2JRFRFT1T2amFgm2T22amgmF11T1ra 解解: :得解得解,21)(2112mmmgmmarmmmgmm)21()(2112,21)212(21211mmmgmmmFTmmmgmmmFT21)212(21122221MrJ 1)系統(tǒng)對軸的轉(zhuǎn)動慣量)系統(tǒng)對軸的轉(zhuǎn)動慣量J是桿的轉(zhuǎn)動是桿的轉(zhuǎn)動慣量慣量J1與小球
14、的轉(zhuǎn)動慣量與小球的轉(zhuǎn)動慣量J2之和之和.o例例: 一根質(zhì)量均勻分布的細(xì)桿,一端連接一個大小可以一根質(zhì)量均勻分布的細(xì)桿,一端連接一個大小可以不計的小球,另一端可繞水平轉(zhuǎn)軸轉(zhuǎn)動不計的小球,另一端可繞水平轉(zhuǎn)軸轉(zhuǎn)動. 某瞬時細(xì)桿在某瞬時細(xì)桿在豎直面內(nèi)繞軸轉(zhuǎn)動的角速度為豎直面內(nèi)繞軸轉(zhuǎn)動的角速度為 ,桿與豎直軸的夾角,桿與豎直軸的夾角為為 . 設(shè)桿的質(zhì)量為設(shè)桿的質(zhì)量為 、桿長為、桿長為 l,小球的質(zhì)量為小球的質(zhì)量為 .1m2m求:求: 1)系統(tǒng)對軸的轉(zhuǎn)動慣量;)系統(tǒng)對軸的轉(zhuǎn)動慣量; 2)在圖示位置系統(tǒng)的轉(zhuǎn)動動能;)在圖示位置系統(tǒng)的轉(zhuǎn)動動能; 3)在圖示位置系統(tǒng)所受重力對軸的力矩)在圖示位置系統(tǒng)所受重力對軸
15、的力矩.gm1gm2解解:l21JJJ22231lmml2231lmm)(2)系統(tǒng)的轉(zhuǎn)動動能為:)系統(tǒng)的轉(zhuǎn)動動能為:2k21JE22213121lmm)(3)系統(tǒng)所受重力有桿的中立和小球的重力)系統(tǒng)所受重力有桿的中立和小球的重力.則系統(tǒng)所受重力對軸的力矩的大小為:則系統(tǒng)所受重力對軸的力矩的大小為:21MMMgmlgmsinsin221glmmsin)21(21ogm1l預(yù)習(xí)要點預(yù)習(xí)要點認(rèn)識質(zhì)點對定點的動量矩的定義,認(rèn)識質(zhì)點對定點的動量矩的定義, 剛體對轉(zhuǎn)軸的動剛體對轉(zhuǎn)軸的動量矩如何計算量矩如何計算?剛體定軸轉(zhuǎn)動的動量矩定理的內(nèi)容及數(shù)學(xué)表達(dá)式是剛體定軸轉(zhuǎn)動的動量矩定理的內(nèi)容及數(shù)學(xué)表達(dá)式是怎樣的怎
16、樣的?1. 動量矩守恒定律的內(nèi)容及守恒定律的條件是什么動量矩守恒定律的內(nèi)容及守恒定律的條件是什么?1. 質(zhì)點的質(zhì)點的vvmrprL0vr0L0Lrxyzom 質(zhì)量為質(zhì)量為 的質(zhì)點以速度的質(zhì)點以速度 在空間運動,某時刻相對原點在空間運動,某時刻相對原點 O 的位矢為的位矢為 ,質(zhì)點相對于原,質(zhì)點相對于原點的角動量點的角動量mrvrmLsin0v大小大小 的方向符合右手法則的方向符合右手法則.0L單位單位 或或12smkgsJ 質(zhì)點對定點質(zhì)點對定點O的動量矩的動量矩 在某坐標(biāo)軸在某坐標(biāo)軸Oz上的投上的投影影 稱為該質(zhì)點對軸稱為該質(zhì)點對軸Oz的動量矩的動量矩. 質(zhì)點作圓運動時,質(zhì)點作圓運動時,其對過
17、圓心其對過圓心O且運動平面垂直的軸且運動平面垂直的軸Oz的動量矩:的動量矩: 0LzL000z0cosLLL或或00zcosLLLmrrmvL20sin又又rmv故得故得mrL2z(取正號(取正號LZ與與Oz同向,負(fù)號反向)同向,負(fù)號反向)z2. 剛體的剛體的JL Oirimiv 剛體作定軸轉(zhuǎn)動時,其內(nèi)所有質(zhì)點都在與軸垂直剛體作定軸轉(zhuǎn)動時,其內(nèi)所有質(zhì)點都在與軸垂直的平面內(nèi)作圓周運動,剛體對軸的動量矩為其所有質(zhì)的平面內(nèi)作圓周運動,剛體對軸的動量矩為其所有質(zhì)點對同一軸的動量矩之和點對同一軸的動量矩之和.niiLL1zrmniii12rmniii12)(J即即L為正,其方向沿為正,其方向沿Oz正向,
18、反之沿正向,反之沿Oz負(fù)向負(fù)向.對剛體組合系統(tǒng),總動量矩為各部分對同軸動量矩之和對剛體組合系統(tǒng),總動量矩為各部分對同軸動量矩之和.剛體所受的外力矩等于剛體角動量的變化率剛體所受的外力矩等于剛體角動量的變化率.121221dLLJJtMtt將上式變形后積分將上式變形后積分動量矩定理動量矩定理: 作用在剛體上的沖量矩等于剛體動量矩作用在剛體上的沖量矩等于剛體動量矩的的增量增量.tJMdd由剛體定軸轉(zhuǎn)動定律由剛體定軸轉(zhuǎn)動定律tLtJMddd)(dLJtMd)(dd21dtttM表示作用在剛體上的合外力矩的時間積累表示作用在剛體上的合外力矩的時間積累, 稱為稱為沖量矩沖量矩.動量矩守恒定律動量矩守恒定律: : 當(dāng)剛體轉(zhuǎn)動系統(tǒng)受到的當(dāng)剛體轉(zhuǎn)動系統(tǒng)受到的合外力矩為合外力矩為零零時,系統(tǒng)的動量矩守恒時,系統(tǒng)的動量矩守恒. .若若 ,0 M花樣滑冰花樣滑冰跳水運動員跳水跳水運動員跳水注意注意1. 1. 對一般的質(zhì)點系統(tǒng),若質(zhì)點系相對于某一定點所受對一般的質(zhì)點系統(tǒng),若質(zhì)點系相對于某一定點所受的合外力矩為零時,則此質(zhì)點系相對于該定點的動量的合外力矩為零時,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 核心業(yè)務(wù)外包合同
- 大學(xué)生艾特萊斯創(chuàng)新創(chuàng)業(yè)
- 小班教案:安全乘車
- 護(hù)理管理培訓(xùn)
- 人事部實習(xí)報告總結(jié)模版
- 阿圖什市2024-2025學(xué)年數(shù)學(xué)三下期末經(jīng)典試題含解析
- 阿榮旗2025屆數(shù)學(xué)三下期末考試試題含解析
- 隴南師范高等??茖W(xué)?!队⒄Z寫作1》2023-2024學(xué)年第二學(xué)期期末試卷
- 二零二四年9月份3D打印技術(shù)重現(xiàn)壺口瀑布地質(zhì)構(gòu)造教學(xué)實驗
- 陜西國際商貿(mào)學(xué)院《林產(chǎn)化學(xué)工藝學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年重慶市江北區(qū)川巴量子學(xué)校小升初語文試卷
- 2024年高考真題-英語(新高考Ⅰ卷) 含解析
- 廣東省醫(yī)療服務(wù)價格項目及價格
- 知道網(wǎng)課智慧《幸福心理學(xué)》測試答案
- 旅游代理代付款協(xié)議書
- 2023年-2025年國企改革深化提升方案
- 第7課全球航路的開辟和歐洲早期殖民擴張課件-2023-2024學(xué)年中職高一下學(xué)期高教版(2023)世界歷史全一冊
- 2024年上海市八年級語文下學(xué)期期中考試復(fù)習(xí)(課內(nèi)古詩文+課外文言文)
- 廣東省深圳市龍崗區(qū)2022-2023學(xué)年八年級下學(xué)期期中測試英語試題
- 城市環(huán)境衛(wèi)生作業(yè)經(jīng)費定額(試行)
- 荊州一醫(yī)院官網(wǎng)體檢報告
評論
0/150
提交評論