數(shù)學專業(yè)攻讀碩士學位研究生_第1頁
數(shù)學專業(yè)攻讀碩士學位研究生_第2頁
數(shù)學專業(yè)攻讀碩士學位研究生_第3頁
數(shù)學專業(yè)攻讀碩士學位研究生_第4頁
數(shù)學專業(yè)攻讀碩士學位研究生_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、數(shù)學專業(yè)攻讀碩士學位研究生培 養(yǎng) 方 案一、培養(yǎng)目標為了更好地貫徹黨和國家的教育方針,教育要“面向現(xiàn)代化、面向世界、面向未來”的要求,培養(yǎng)德、智、體全面發(fā)展的教學、科研和適應國家經(jīng)濟建設和社會發(fā)展需要的高級專門人才,對碩士生培養(yǎng)基本要求如下:1較好地掌握馬克思主義的基本原理,堅持黨的基本路線,熱愛祖國,遵紀守法,品德優(yōu)良,學風嚴謹,具有較強的事業(yè)心和獻身精神,積極為社會主義現(xiàn)代化建設服務。2身心健康。3了解本研究方向的發(fā)展趨勢,掌握其主攻方向的基本知識,學好本方向的基礎課程,對本方向的研究課題和重要文獻有系統(tǒng)的了解。具有獨立從事科學研究工作的能力和創(chuàng)新能力。二、學習年限和學分碩士研究生的學習年

2、限為三年(其中應用數(shù)學專業(yè)為兩年半),在職碩士研究生的學習年限可延長至三年半或四年。三、主要研究方向1解析數(shù)論及其應用2有限群論3矩陣代數(shù)及其表示4分析及其應用5偏微分方程6幾何分析與凸體理論7奇異攝動理論與漸近分析8分層理論與非線性偏微分方程9變分不等方程與優(yōu)化控制10分支理論的應用及數(shù)值方法11偏微分方程的邊值問題和反問題12動力系統(tǒng)及其應用13連續(xù)介質力學中的數(shù)學理論與方法14數(shù)學建模與工業(yè)中的數(shù)學反問題15數(shù)值代數(shù)與并行算法16偏微分方程數(shù)值方法17數(shù)值逼近與計算幾何18小波分析與反問題19分歧與混沌的理論和算法20分數(shù)階微分方程數(shù)值解21計算流體力學22計算分子生物學23孤立子理論與

3、可積系統(tǒng)24數(shù)學規(guī)劃理論與算法25錐優(yōu)化和內點算法及其應用26非線性整數(shù)規(guī)劃理論與算法27隨機模型與智能算法28機器學習與生物信息29非線性動力系統(tǒng)與控制30組合最優(yōu)化及應用31保險理論與金融數(shù)學32圖論及其應用四、課程設置及學分要求1課程設置(見附表)2課程學分要求:課程學分要求達到48學分及以上。3要求在攻讀碩士學位期間在國外重要期刊或國內核心刊物上發(fā)表論文一篇以上。五、碩博連讀資格考試申請碩博連讀的學生需通過資格考試,資格考試通常一年舉行兩次,時間安排與學校博士生入學考試同步。其他按照上海大學有關文件執(zhí)行。六、培養(yǎng)計劃的制定研究生入學后,在導師的指導下,完成培養(yǎng)計劃的制定,并報學院(學科

4、)學位分委員會批準,在入學后一個月內報研究生部。七、論文工作1在修滿規(guī)定學分后,可申請進入論文課題研究, 但在開題報告前應遞交相關的綜述報告。2開題報告一般在第二學年第一學期進行,選題應根據(jù)專業(yè)特點,著重選擇對于科學研究和經(jīng)濟建設有應用價值的課題。課題要具有先進性,課題份量和難易程度要適當,并盡量結合國家、部委和上海市的科研任務選題。開題報告應在3000字以上,包括發(fā)展現(xiàn)狀、選題意義、研究內容、進度安排以及預期成果等。3開題報告應組織3名及以上高級職稱教師進行評審,為公開性報告。4在論文階段的中期,進行階段檢查和中期考核,對離進度要求偏差較大者,應采取相應措施。5在完成論文并經(jīng)2名高級職稱教師

5、雙盲評審通過后,組織校內外專家評審答辯。論文答辯通過后,并至少在國外重要期刊或國內核心期刊上發(fā)表與學位論文有關的學術論文一篇后才可申請碩士學位。  數(shù)學專業(yè)碩士研究生課程設置類  別課程編號課程名稱學時學分開課學期備注學 位 課政治理論課001000701科學社會主義理論與實踐3021 001000702自然辯證法4532第一外國語001000704公共英語10031,2 011000701專業(yè)英語4024專業(yè)基礎課專業(yè)課011000702泛函分析4041根據(jù)專業(yè)任選三門011101701現(xiàn)代分析基礎404101110170

6、2近代分析基礎4041011101703一般拓撲學4041011101704代數(shù)學4041,2011101705現(xiàn)代偏微分方程4042011101706數(shù)值代數(shù)4041,2011101707逼近論及其算法4041,2011101708數(shù)學規(guī)劃4041011101709應用隨機過程4041,2必修 課必修 課文獻閱讀研討課文獻閱讀研討課011101901擬線性雙曲型偏微分方程4043根據(jù)專業(yè)任選六門根據(jù)專業(yè)任選六門011101902凸體的Brunn-Minkowski理論4042011101903空間理論基礎4042011101904高等矩陣代數(shù)4042011101905群論

7、概論4043011101906微分流形初步4043011101907非線性方程組迭代解法4042011101908最優(yōu)化理論與方法4043011101909不適定問題的解法4043011101910非線性逼近的理論與方法4043011101928矩陣計算4043011101911孤立子理論與可積系統(tǒng)4043011101912二階橢圓型偏微分方程4042011101913微分方程數(shù)值解法4043011101914分數(shù)階微分方程數(shù)值解法4042011101915分歧和混沌的數(shù)值解法4043011101916布朗運動與隨機流系統(tǒng)4042011101917全局最優(yōu)化4042011101918錐優(yōu)化和內

8、點算法及其應用4042011101919組合最優(yōu)化與計算復雜性4042011101920隨機模型4043011101921復雜網(wǎng)絡理論與應用4042011101922整數(shù)規(guī)劃4043011101923圖論及其應用4043011101924漸進分析和計算機代數(shù)4042011101925非線性偏微分方程4042011101927應用數(shù)學專題選講4043學術研討課   2   Cultivation Plan for Masters Degree of Mathematics1Cultivation aimIn order to bette

9、r follow the education policy of CCP and the state that “Education should face the modernization, face the world and face the future”, cultivate high-ranking special personnel who is suitable for teaching, scientific research, the states economic construction and social development, give everyone th

10、e best opportunities to grow morally, intellectually and physically, to lay down the following requirements for masters degree applicants:1.1 Better master basic Marxism principles, insist CCP s basic lines, love our motherland, follow disciplines and obey laws, have good moralities, have a cautious

11、 study style, have a pretty strong ambition and a self-devotion spirit, active to serve socialism modernization.1.2 Healthy1.3 Know the development tendency, research task and important materials systematically, and master the basic knowledge and courses of this program, with the ability and creativ

12、ity of independent scientific researching.2Duration of the Program The program is scheduled for 3 years for full-time students, and can be extended to 3 and a half years or 4 years for in-service students.3Main Orientations of Research01. Number Theory and Its Applications02. Theory of Finite Group0

13、3. Matrix Algebra and Its Representations04. Analysis and Its Applications05. Partial Differential Equations06. Geometric Analysis and Convex Body Theory07. Singular Perturbation and Asymptotic Analysis08. Stratification Theory and Nonlinear Partial Differential Equation09. Variational Inequality an

14、d Optimal Control10. Application and Numerical Method of Bifurcation11. Boundary Value Problems and Inverse Problems in Partial Differential Equations12. Dynamic System and Its Applications13. Mathematical Theory and Methods in Continuum Mechanics14. Mathematical Modeling and Inverse Problems in Ind

15、ustry15. Numerical Algebra and Parallel Algorithms16. Numerical Methods for Partial Differential Equations17. Approximation and Computational Geometry18. Wavelet Analysis and Inverse Problems19. Theory and Algorithm of Bifurcation and Chaos20. Numerical methods for Fractional Differential Equations2

16、1. Computational Fluid Mechanics22. Computational Molecular Biology23. Soliton Theory and Integrable System24. Theory and Algorithm of Mathematical Programming25. Conic Optimization and Interior-Point Methods and Applications26. Theory and Algorithm of Nonlinear Integer Programming 27. Stochastic Mo

17、del and Intelligent Algorithm28. Machine Learning and Biological Information29. Nonlinear Dynamic System and Cybernetics30. Combinatorial Optimization and Application31. Actuarial Theory and Financial Mathematics32. Graph Theory with Applications4Curricular and Credit Hour Requirements4.1 Curricular

18、 (as listed below)4.2 Credit Hour Requirements: At least 48 credit hours.4.3 Students are required participate in at least 5 academic seminars, and publish at least one article in key foreign journal or national core journal.5Qualification exam for consecutive master and doctor programStudents apply

19、ing for consecutive master and doctor program should pass the qualification exams on a twice-a-year basis, which coincide with doctor enrollment exams. As for the other requirements, they are subject to the regulations specified in the relevant SU documents.6Setting Cultivation PlanThe cultivation p

20、lan shall be made under the instruction of the tutor and submitted to the academic committee of the college. Within one month after the enrollment, the plan is required submitted to the Graduate Department. Courses of doctorial degree are required to be finished within the first academic year.7Thesi

21、s7.1 After completing the stipulated credit points, postgraduates embark on thesis research, but they are to submit relevant comprehensive report prior to the preliminary conference.7.2 The preliminary conference is scheduled to take place in the first term of the second academic year. The theme sho

22、uld evolve around scientific research and economic construction in light of the characteristics of the specialty with applied value. The theme should be up-to-date, and achievable through adequate efforts. It's well advisable to link the theme with scientific undertakings of the country, the min

23、istries and Shanghai Municipality. The preliminary lecture covers the quo status of development, the impact of the theme, research content, timetable and expected result.7.3 The preliminary lecture is to be assessed by at least three teachers with senior academic titles on an open basis.7.4 Midway t

24、hrough the thesis, stage check-up and mid-term assessment are conducted. Given great deviation from the schedule, appropriate measures should be taken accordingly.7.5 The theses, upon completion, are examined and approved in the form of dual sampling appraisals by two teachers with senior academic t

25、itles before assessment being made by experts both from and outside the university. After the thesis is approved, a degree-related academic article published in foreign key journals or domestic core journals is prerequisite to the acquisition of master's degree.CurriculumCategoryCourse numberCou

26、rse namePeriodCreditTerm RemarksAcademic degree coursesPolitical theoretical course001000701Scientific Socialist Theory and Practice3021001000702Dialectics of Nature4532First foreign language001000704Public English10031,2011000701Specialty English4024Basic and specialty courses011000702Functional An

27、alysis4041Choose three courses according to specialty011101701Introduction for Modern Analysis4041011101702Fundament of Advance Analysis4041011101703General Topology4041011101704Algebra4041, 2011101705Modern Methods in Partial Differential Equations4042011101706Numerical Algebra4041, 2011101707Appro

28、ximation Theory and Algorithms4041, 2011101708Mathematical Programming4041011101709Applied Stochastic Processes4041, 2Required CoursesLiterature reading seminar011101901Quasilinear Hyperbolic Partial Differential Equations4043Choose six courses according to specialtyChoose six courses according to specialty011101902Convex Bodies: The Brunn-Minkowski Theory4042011101903Introduction to Spaces Theory4042011101904Advanced Matrix Algebra4042011101905The Theory of G

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論