高中理科橢圓習(xí)題答案 (2)_第1頁
高中理科橢圓習(xí)題答案 (2)_第2頁
高中理科橢圓習(xí)題答案 (2)_第3頁
高中理科橢圓習(xí)題答案 (2)_第4頁
高中理科橢圓習(xí)題答案 (2)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、橢圓標(biāo)準(zhǔn)方程典型例題例1 已知橢圓的一個(gè)焦點(diǎn)為(0,2)求的值分析:把橢圓的方程化為標(biāo)準(zhǔn)方程,由,根據(jù)關(guān)系可求出的值解:方程變形為因?yàn)榻裹c(diǎn)在軸上,所以,解得又,所以,適合故例2 已知橢圓的中心在原點(diǎn),且經(jīng)過點(diǎn),求橢圓的標(biāo)準(zhǔn)方程分析:因橢圓的中心在原點(diǎn),故其標(biāo)準(zhǔn)方程有兩種情況根據(jù)題設(shè)條件,運(yùn)用待定系數(shù)法,求出參數(shù)和(或和)的值,即可求得橢圓的標(biāo)準(zhǔn)方程解:當(dāng)焦點(diǎn)在軸上時(shí),設(shè)其方程為由橢圓過點(diǎn),知又,代入得,故橢圓的方程為當(dāng)焦點(diǎn)在軸上時(shí),設(shè)其方程為由橢圓過點(diǎn),知又,聯(lián)立解得,故橢圓的方程為例3 的底邊,和兩邊上中線長之和為30,求此三角形重心的軌跡和頂點(diǎn)的軌跡分析:(1)由已知可得,再利用橢圓定義求

2、解(2)由的軌跡方程、坐標(biāo)的關(guān)系,利用代入法求的軌跡方程解: (1)以所在的直線為軸,中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系設(shè)點(diǎn)坐標(biāo)為,由,知點(diǎn)的軌跡是以、為焦點(diǎn)的橢圓,且除去軸上兩點(diǎn)因,有,故其方程為(2)設(shè),則 由題意有代入,得的軌跡方程為,其軌跡是橢圓(除去軸上兩點(diǎn))例4 已知點(diǎn)在以坐標(biāo)軸為對稱軸的橢圓上,點(diǎn)到兩焦點(diǎn)的距離分別為和,過點(diǎn)作焦點(diǎn)所在軸的垂線,它恰好過橢圓的一個(gè)焦點(diǎn),求橢圓方程解:設(shè)兩焦點(diǎn)為、,且,從橢圓定義知即從知垂直焦點(diǎn)所在的對稱軸,所以在中,可求出,從而所求橢圓方程為或例5 已知橢圓方程,長軸端點(diǎn)為,焦點(diǎn)為,是橢圓上一點(diǎn),求:的面積(用、表示)分析:求面積要結(jié)合余弦定理及定義求角的兩

3、鄰邊,從而利用求面積解:如圖,設(shè),由橢圓的對稱性,不妨設(shè),由橢圓的對稱性,不妨設(shè)在第一象限由余弦定理知: ·由橢圓定義知: ,則得 故 例6 已知?jiǎng)訄A過定點(diǎn),且在定圓的內(nèi)部與其相內(nèi)切,求動(dòng)圓圓心的軌跡方程分析:關(guān)鍵是根據(jù)題意,列出點(diǎn)P滿足的關(guān)系式解:如圖所示,設(shè)動(dòng)圓和定圓內(nèi)切于點(diǎn)動(dòng)點(diǎn)到兩定點(diǎn),即定點(diǎn)和定圓圓心距離之和恰好等于定圓半徑,即點(diǎn)的軌跡是以,為兩焦點(diǎn),半長軸為4,半短軸長為的橢圓的方程:說明:本題是先根據(jù)橢圓的定義,判定軌跡是橢圓,然后根據(jù)橢圓的標(biāo)準(zhǔn)方程,求軌跡的方程這是求軌跡方程的一種重要思想方法例7 已知橢圓,(1)求過點(diǎn)且被平分的弦所在直線的方程;(2)求斜率為2的平行

4、弦的中點(diǎn)軌跡方程;(3)過引橢圓的割線,求截得的弦的中點(diǎn)的軌跡方程;(4)橢圓上有兩點(diǎn)、,為原點(diǎn),且有直線、斜率滿足,求線段中點(diǎn)的軌跡方程 分析:此題中四問都跟弦中點(diǎn)有關(guān),因此可考慮設(shè)弦端坐標(biāo)的方法解:設(shè)弦兩端點(diǎn)分別為,線段的中點(diǎn),則得由題意知,則上式兩端同除以,有,將代入得(1)將,代入,得,故所求直線方程為: 將代入橢圓方程得,符合題意,為所求(2)將代入得所求軌跡方程為: (橢圓內(nèi)部分)(3)將代入得所求軌跡方程為: (橢圓內(nèi)部分)(4)由得 : , , 將平方并整理得, , , 將代入得: , 再將代入式得: , 即 此即為所求軌跡方程當(dāng)然,此題除了設(shè)弦端坐標(biāo)的方法,還可用其它方法解決

5、例8 已知橢圓及直線(1)當(dāng)為何值時(shí),直線與橢圓有公共點(diǎn)?(2)若直線被橢圓截得的弦長為,求直線的方程解:(1)把直線方程代入橢圓方程得 ,即,解得(2)設(shè)直線與橢圓的兩個(gè)交點(diǎn)的橫坐標(biāo)為,由(1)得,根據(jù)弦長公式得 :解得方程為說明:處理有關(guān)直線與橢圓的位置關(guān)系問題及有關(guān)弦長問題,采用的方法與處理直線和圓的有所區(qū)別這里解決直線與橢圓的交點(diǎn)問題,一般考慮判別式;解決弦長問題,一般應(yīng)用弦長公式用弦長公式,若能合理運(yùn)用韋達(dá)定理(即根與系數(shù)的關(guān)系),可大大簡化運(yùn)算過程例9 以橢圓的焦點(diǎn)為焦點(diǎn),過直線上一點(diǎn)作橢圓,要使所作橢圓的長軸最短,點(diǎn)應(yīng)在何處?并求出此時(shí)的橢圓方程分析:橢圓的焦點(diǎn)容易求出,按照橢圓

6、的定義,本題實(shí)際上就是要在已知直線上找一點(diǎn),使該點(diǎn)到直線同側(cè)的兩已知點(diǎn)(即兩焦點(diǎn))的距離之和最小,只須利用對稱就可解決解:如圖所示,橢圓的焦點(diǎn)為,點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為(9,6),直線的方程為解方程組得交點(diǎn)的坐標(biāo)為(5,4)此時(shí)最小所求橢圓的長軸:,又,因此,所求橢圓的方程為例10 已知方程表示橢圓,求的取值范圍解:由得,且滿足條件的的取值范圍是,且說明:本題易出現(xiàn)如下錯(cuò)解:由得,故的取值范圍是出錯(cuò)的原因是沒有注意橢圓的標(biāo)準(zhǔn)方程中這個(gè)條件,當(dāng)時(shí),并不表示橢圓例11 已知表示焦點(diǎn)在軸上的橢圓,求的取值范圍分析:依據(jù)已知條件確定的三角函數(shù)的大小關(guān)系再根據(jù)三角函數(shù)的單調(diào)性,求出的取值范圍解:方程

7、可化為因?yàn)榻裹c(diǎn)在軸上,所以因此且從而說明:(1)由橢圓的標(biāo)準(zhǔn)方程知,這是容易忽視的地方(2)由焦點(diǎn)在軸上,知, (3)求的取值范圍時(shí),應(yīng)注意題目中的條件例12求中心在原點(diǎn),對稱軸為坐標(biāo)軸,且經(jīng)過和兩點(diǎn)的橢圓方程分析:由題設(shè)條件焦點(diǎn)在哪個(gè)軸上不明確,橢圓標(biāo)準(zhǔn)方程有兩種情形,為了計(jì)算簡便起見,可設(shè)其方程為(,),且不必去考慮焦點(diǎn)在哪個(gè)坐標(biāo)軸上,直接可求出方程解:設(shè)所求橢圓方程為(,)由和兩點(diǎn)在橢圓上可得即所以,故所求的橢圓方程為例13 知圓,從這個(gè)圓上任意一點(diǎn)向軸作垂線段,求線段中點(diǎn)的軌跡分析:本題是已知一些軌跡,求動(dòng)點(diǎn)軌跡問題這種題目一般利用中間變量(相關(guān)點(diǎn))求軌跡方程或軌跡解:設(shè)點(diǎn)的坐標(biāo)為,點(diǎn)

8、的坐標(biāo)為,則,因?yàn)樵趫A上,所以將,代入方程得所以點(diǎn)的軌跡是一個(gè)橢圓說明:此題是利用相關(guān)點(diǎn)法求軌跡方程的方法,這種方法具體做法如下:首先設(shè)動(dòng)點(diǎn)的坐標(biāo)為,設(shè)已知軌跡上的點(diǎn)的坐標(biāo)為,然后根據(jù)題目要求,使,與,建立等式關(guān)系,從而由這些等式關(guān)系求出和代入已知的軌跡方程,就可以求出關(guān)于,的方程,化簡后即我們所求的方程這種方法是求軌跡方程的最基本的方法,必須掌握例14 已知長軸為12,短軸長為6,焦點(diǎn)在軸上的橢圓,過它對的左焦點(diǎn)作傾斜解為的直線交橢圓于,兩點(diǎn),求弦的長分析:可以利用弦長公式求得,也可以利用橢圓定義及余弦定理,還可以利用焦點(diǎn)半徑來求解:(法1)利用直線與橢圓相交的弦長公式求解因?yàn)?,所以因?yàn)榻裹c(diǎn)

9、在軸上,所以橢圓方程為,左焦點(diǎn),從而直線方程為由直線方程與橢圓方程聯(lián)立得:設(shè),為方程兩根,所以, 從而(法2)利用橢圓的定義及余弦定理求解由題意可知橢圓方程為,設(shè),則,在中,即;所以同理在中,用余弦定理得,所以(法3)利用焦半徑求解先根據(jù)直線與橢圓聯(lián)立的方程求出方程的兩根,它們分別是,的橫坐標(biāo)再根據(jù)焦半徑,從而求出例15橢圓上的點(diǎn)到焦點(diǎn)的距離為2,為的中點(diǎn),則(為坐標(biāo)原點(diǎn))的值為A4B2 C8 D解:如圖所示,設(shè)橢圓的另一個(gè)焦點(diǎn)為,由橢圓第一定義得,所以,又因?yàn)闉榈闹形痪€,所以,故答案為A說明:(1)橢圓定義:平面內(nèi)與兩定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓(2)橢圓上的點(diǎn)必定適合橢

10、圓的這一定義,即,利用這個(gè)等式可以解決橢圓上的點(diǎn)與焦點(diǎn)的有關(guān)距離例16 已知橢圓,試確定的取值范圍,使得對于直線,橢圓上有不同的兩點(diǎn)關(guān)于該直線對稱分析:若設(shè)橢圓上,兩點(diǎn)關(guān)于直線對稱,則已知條件等價(jià)于:(1)直線;(2)弦的中點(diǎn)在上利用上述條件建立的不等式即可求得的取值范圍解:(法1)設(shè)橢圓上,兩點(diǎn)關(guān)于直線對稱,直線與交于點(diǎn)的斜率,設(shè)直線的方程為由方程組消去得。于是,即點(diǎn)的坐標(biāo)為點(diǎn)在直線上,解得將式代入式得,是橢圓上的兩點(diǎn),解得(法2)同解法1得出,即點(diǎn)坐標(biāo)為,為橢圓上的兩點(diǎn),點(diǎn)在橢圓的內(nèi)部,解得(法3)設(shè),是橢圓上關(guān)于對稱的兩點(diǎn),直線與的交點(diǎn)的坐標(biāo)為,在橢圓上,兩式相減得,即又直線,即。又點(diǎn)在

11、直線上,。由,得點(diǎn)的坐標(biāo)為以下同解法2.說明:涉及橢圓上兩點(diǎn),關(guān)于直線恒對稱,求有關(guān)參數(shù)的取值范圍問題,可以采用列參數(shù)滿足的不等式:(1)利用直線與橢圓恒有兩個(gè)交點(diǎn),通過直線方程與橢圓方程組成的方程組,消元后得到的一元二次方程的判別式,建立參數(shù)方程(2)利用弦的中點(diǎn)在橢圓內(nèi)部,滿足,將,利用參數(shù)表示,建立參數(shù)不等式例17 在面積為1的中,建立適當(dāng)?shù)淖鴺?biāo)系,求出以、為焦點(diǎn)且過點(diǎn)的橢圓方程解:以的中點(diǎn)為原點(diǎn),所在直線為軸建立直角坐標(biāo)系,設(shè)則即得所求橢圓方程為例18 已知是直線被橢圓所截得的線段的中點(diǎn),求直線的方程分析:本題考查直線與橢圓的位置關(guān)系問題通常將直線方程與橢圓方程聯(lián)立消去(或),得到關(guān)于

12、(或)的一元二次方程,再由根與系數(shù)的關(guān)系,直接求出,(或,)的值代入計(jì)算即得并不需要求出直線與橢圓的交點(diǎn)坐標(biāo),這種“設(shè)而不求”的方法,在解析幾何中是經(jīng)常采用的解:方法一:設(shè)所求直線方程為代入橢圓方程,整理得 設(shè)直線與橢圓的交點(diǎn)為,則、是的兩根,為中點(diǎn),所求直線方程為方法二:設(shè)直線與橢圓交點(diǎn),為中點(diǎn),又,在橢圓上,兩式相減得,即直線方程為方法三:設(shè)所求直線與橢圓的一個(gè)交點(diǎn)為,另一個(gè)交點(diǎn)、在橢圓上,。 從而,在方程的圖形上,而過、的直線只有一條,直線方程為說明:直線與圓錐曲線的位置關(guān)系是重點(diǎn)考查的解析幾何問題,“設(shè)而不求”的方法是處理此類問題的有效方法若已知焦點(diǎn)是、的橢圓截直線所得弦中點(diǎn)的橫坐標(biāo)是

13、4,則如何求橢圓方程?20.已知橢圓的焦點(diǎn)是,直線是橢圓的一條準(zhǔn)線. 求橢圓的方程; 設(shè)點(diǎn)P在橢圓上,且,求.簡解: . 設(shè)則 又 , 21.已知曲線按向量平移后得到曲線C. (1)求曲線C的方程;(2)過點(diǎn)D(0, 2)的直線與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè),求實(shí)數(shù)的取值范圍.解:(1) 由已知設(shè)點(diǎn)P(滿足,點(diǎn)P的對應(yīng)點(diǎn)Q( 則 .(2)當(dāng)直線的斜率不存在時(shí),此時(shí); 當(dāng)直線的斜率存在時(shí),設(shè):代入橢圓方程得: 得設(shè),則 , 又 則 . .又由 ,得,即即,又綜上:22求中心在原點(diǎn),一個(gè)焦點(diǎn)為且被直線截得的弦中點(diǎn)橫坐標(biāo)為的橢圓方程.(目標(biāo):能夠用設(shè)而不解的方法解決中點(diǎn)弦問題)

14、【解析】 設(shè)橢圓方程 ,弦AB, 中點(diǎn),則,,又, 典型例題一例1 橢圓的一個(gè)頂點(diǎn)為,其長軸長是短軸長的2倍,求橢圓的標(biāo)準(zhǔn)方程分析:題目沒有指出焦點(diǎn)的位置,要考慮兩種位置解:(1)當(dāng)為長軸端點(diǎn)時(shí),橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),橢圓的標(biāo)準(zhǔn)方程為:;說明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況典型例題二例2 一個(gè)橢圓的焦點(diǎn)將其準(zhǔn)線間的距離三等分,求橢圓的離心率解: ,說明:求橢圓的離心率問題,通常有兩種處理方法,一是求,求,再求比二是列含和的齊次方程,再化含的方程,解方程即可典型例題三例3 已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓與直

15、線交于、兩點(diǎn),為中點(diǎn),的斜率為0.25,橢圓的短軸長為2,求橢圓的方程解:由題意,設(shè)橢圓方程為,由,得,為所求說明:(1)此題求橢圓方程采用的是待定系數(shù)法;(2)直線與曲線的綜合問題,經(jīng)常要借用根與系數(shù)的關(guān)系,來解決弦長、弦中點(diǎn)、弦斜率問題典型例題四例4橢圓上不同三點(diǎn),與焦點(diǎn)的距離成等差數(shù)列(1)求證;(2)若線段的垂直平分線與軸的交點(diǎn)為,求直線的斜率證明:(1)由橢圓方程知,由圓錐曲線的統(tǒng)一定義知:, 同理 ,且, ,即 (2)因?yàn)榫€段的中點(diǎn)為,所以它的垂直平分線方程為 又點(diǎn)在軸上,設(shè)其坐標(biāo)為,代入上式,得 又點(diǎn),都在橢圓上, 將此式代入,并利用的結(jié)論得 典型例題五例5 已知橢圓,、為兩焦點(diǎn)

16、,問能否在橢圓上找一點(diǎn),使到左準(zhǔn)線的距離是與的等比中項(xiàng)?若存在,則求出點(diǎn)的坐標(biāo);若不存在,請說明理由解:假設(shè)存在,設(shè),由已知條件得,左準(zhǔn)線的方程是,又由焦半徑公式知:,整理得解之得或 另一方面 則與矛盾,所以滿足條件的點(diǎn)不存在說明:(1)利用焦半徑公式解常可簡化解題過程(2)本例是存在性問題,解決存在性問題,一般用分析法,即假設(shè)存在,根據(jù)已知條件進(jìn)行推理和運(yùn)算進(jìn)而根據(jù)推理得到的結(jié)果,再作判斷(3)本例也可設(shè)存在,推出矛盾結(jié)論(讀者自己完成)典型例題六例6 已知橢圓,求過點(diǎn)且被平分的弦所在的直線方程分析一:已知一點(diǎn)求直線,關(guān)鍵是求斜率,故設(shè)斜率為,利用條件求解法一:設(shè)所求直線的斜率為,則直線方程

17、為代入橢圓方程,并整理得由韋達(dá)定理得是弦中點(diǎn),故得所以所求直線方程為分析二:設(shè)弦兩端坐標(biāo)為、,列關(guān)于、的方程組,從而求斜率:解法二:設(shè)過的直線與橢圓交于、,則由題意得得 將、代入得,即直線的斜率為所求直線方程為說明:(1)有關(guān)弦中點(diǎn)的問題,主要有三種類型:過定點(diǎn)且被定點(diǎn)平分的弦;平行弦的中點(diǎn)軌跡;過定點(diǎn)的弦中點(diǎn)軌跡(2)解法二是“點(diǎn)差法”,解決有關(guān)弦中點(diǎn)問題的題較方便,要點(diǎn)是巧代斜率(3)有關(guān)弦及弦中點(diǎn)問題常用的方法是:“韋達(dá)定理應(yīng)用”及“點(diǎn)差法”有關(guān)二次曲線問題也適用典型例題七例7 求適合條件的橢圓的標(biāo)準(zhǔn)方程(1)長軸長是短軸長的2倍,且過點(diǎn);(2)在軸上的一個(gè)焦點(diǎn)與短軸兩端點(diǎn)的聯(lián)機(jī)互相垂直

18、,且焦距為6分析:當(dāng)方程有兩種形式時(shí),應(yīng)分別求解,如(1)題中由求出,在得方程后,不能依此寫出另一方程解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為或由已知 又過點(diǎn),因此有或 由、,得,或,故所求的方程為或(2)設(shè)方程為由已知,所以故所求方程為說明:根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程的思路是“選標(biāo)準(zhǔn),定參數(shù)”關(guān)鍵在于焦點(diǎn)的位置是否確定,若不能確定,應(yīng)設(shè)方程或典型例題八例8 橢圓的右焦點(diǎn)為,過點(diǎn),點(diǎn)在橢圓上,當(dāng)為最小值時(shí),求點(diǎn)的坐標(biāo)分析:本題的關(guān)鍵是求出離心率,把轉(zhuǎn)化為到右準(zhǔn)線的距離,從而得最小值一般地,求均可用此法解:由已知:,所以,右準(zhǔn)線過作,垂足為,交橢圓于,故顯然的最小值為,即為所求點(diǎn),因此,且在橢圓上故所以說明:

19、本題關(guān)鍵在于未知式中的“2”的處理事實(shí)上,如圖,即是到右準(zhǔn)線的距離的一半,即圖中的,問題轉(zhuǎn)化為求橢圓上一點(diǎn),使到的距離與到右準(zhǔn)線距離之和取最小值典型例題九例9 求橢圓上的點(diǎn)到直線的距離的最小值分析:先寫出橢圓的參數(shù)方程,由點(diǎn)到直線的距離建立三角函數(shù)關(guān)系式,求出距離的最小值解:橢圓的參數(shù)方程為設(shè)橢圓上的點(diǎn)的坐標(biāo)為,則點(diǎn)到直線的距離為當(dāng)時(shí),說明:當(dāng)直接設(shè)點(diǎn)的坐標(biāo)不易解決問題時(shí),可建立曲線的參數(shù)方程典型例題十例10 設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長軸在軸上,離心率,已知點(diǎn)到這個(gè)橢圓上的點(diǎn)的最遠(yuǎn)距離是,求這個(gè)橢圓的方程,并求橢圓上的點(diǎn)的距離等于的點(diǎn)的坐標(biāo)分析:本題考查橢圓的性質(zhì)、距離公式、最大值以及分析問題

20、的能力,在求的最大值時(shí),要注意討論的取值范圍此題可以用橢圓的標(biāo)準(zhǔn)方程,也可用橢圓的參數(shù)方程,要善于應(yīng)用不等式、平面幾何、三角等知識(shí)解決一些綜合性問題,從而加強(qiáng)等價(jià)轉(zhuǎn)換、形數(shù)結(jié)合的思想,提高邏輯推理能力解法一:設(shè)所求橢圓的直角坐標(biāo)方程是,其中待定由可得,即設(shè)橢圓上的點(diǎn)到點(diǎn)的距離是,則 其中如果,則當(dāng)時(shí),(從而)有最大值由題設(shè)得,由此得,與矛盾因此必有成立,于是當(dāng)時(shí),(從而)有最大值由題設(shè)得,可得,所求橢圓方程是由及求得的橢圓方程可得,橢圓上的點(diǎn),點(diǎn)到點(diǎn)的距離是解法二:根據(jù)題設(shè)條件,可取橢圓的參數(shù)方程是,其中,待定,為參數(shù)由可得,即設(shè)橢圓上的點(diǎn)到點(diǎn)的距離為,則 如果,即,則當(dāng)時(shí),(從而)有最大值由

21、題設(shè)得,由此得,與矛盾,因此必有成立于是當(dāng)時(shí)(從而)有最大值由題設(shè)知,所求橢圓的參數(shù)方程是由,可得橢圓上的是,典型例題十一例11 設(shè),求的最大值和最小值分析:本題的關(guān)鍵是利用形數(shù)結(jié)合,觀察方程與橢圓方程的結(jié)構(gòu)一致設(shè),顯然它表示一個(gè)圓,由此可以畫出圖形,考慮橢圓及圓的位置關(guān)系求得最值解:由,得 可見它表示一個(gè)橢圓,其中心在點(diǎn),焦點(diǎn)在軸上,且過(0,0)點(diǎn)和(3,0)點(diǎn)設(shè),則 它表示一個(gè)圓,其圓心為(1,0)半徑為在同一坐標(biāo)系中作出橢圓及圓,如圖所示觀察圖形可知,當(dāng)圓過(0,0)點(diǎn)時(shí),半徑最小,即,此時(shí);當(dāng)圓過(3,0)點(diǎn)時(shí),半徑最大,即,的最小值為0,最大值為15典型例題十二例12 已知橢圓,、

22、是其長軸的兩個(gè)端點(diǎn)(1)過一個(gè)焦點(diǎn)作垂直于長軸的弦,求證:不論、如何變化,(2)如果橢圓上存在一個(gè)點(diǎn),使,求的離心率的取值范圍分析:本題從已知條件出發(fā),兩問都應(yīng)從和的正切值出發(fā)做出估計(jì),因此要從點(diǎn)的坐標(biāo)、斜率入手本題的第(2)問中,其關(guān)鍵是根據(jù)什么去列出離心率滿足的不等式,只能是橢圓的固有性質(zhì):,根據(jù)得到,將代入,消去,用、表示,以便利用列出不等式這里要求思路清楚,計(jì)算準(zhǔn)確,一氣呵成解:(1)設(shè), 于是,是到的角故 (2)設(shè),則,由于對稱性,不妨設(shè),于是是到的角, 整理得, , ,或(舍),典型例題十三例13 已知橢圓的離心率,求的值分析:分兩種情況進(jìn)行討論解:當(dāng)橢圓的焦點(diǎn)在軸上時(shí),得由,得當(dāng)

23、橢圓的焦點(diǎn)在軸上時(shí),得由,得,即滿足條件的或說明:本題易出現(xiàn)漏解排除錯(cuò)誤的辦法是:因?yàn)榕c9的大小關(guān)系不定,所以橢圓的焦點(diǎn)可能在軸上,也可能在軸上故必須進(jìn)行討論典型例題十四例14 已知橢圓上一點(diǎn)到右焦點(diǎn)的距離為,求到左準(zhǔn)線的距離分析:利用橢圓的兩個(gè)定義,或利用第二定義和橢圓兩準(zhǔn)線的距離求解解法一:由,得,由橢圓定義,得由橢圓第二定義,為到左準(zhǔn)線的距離,即到左準(zhǔn)線的距離為解法二:,為到右準(zhǔn)線的距離,又橢圓兩準(zhǔn)線的距離為到左準(zhǔn)線的距離為說明:運(yùn)用橢圓的第二定義時(shí),要注意焦點(diǎn)和準(zhǔn)線的同側(cè)性否則就會(huì)產(chǎn)生誤解橢圓有兩個(gè)定義,是從不同的角度反映橢圓的特征,解題時(shí)要靈活選擇,運(yùn)用自如一般地,如遇到動(dòng)點(diǎn)到兩個(gè)定

24、點(diǎn)的問題,用橢圓第一定義;如果遇到動(dòng)點(diǎn)到定直線的距離問題,則用橢圓的第二定義典型例題十五例15 設(shè)橢圓(為參數(shù))上一點(diǎn)與軸正向所成角,求點(diǎn)坐標(biāo)分析:利用參數(shù)與之間的關(guān)系求解解:設(shè),由與軸正向所成角為,即而,由此得到,點(diǎn)坐標(biāo)為典型例題十六例16 設(shè)是離心率為的橢圓 上的一點(diǎn),到左焦點(diǎn)和右焦點(diǎn)的距離分別為和,求證:,分析:本題考查橢圓的兩個(gè)定義,利用橢圓第二定義,可將橢圓上點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到相應(yīng)準(zhǔn)線距離解:點(diǎn)到橢圓的左準(zhǔn)線的距離,由橢圓第二定義,由橢圓第一定義,說明:本題求證的是橢圓的焦半徑公式,在解決與橢圓的焦半徑(或焦點(diǎn)弦)的有關(guān)問題時(shí),有著廣泛的應(yīng)用請寫出橢圓焦點(diǎn)在軸上的焦半徑公式典型

25、例題十七例17已知橢圓內(nèi)有一點(diǎn),、分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上一點(diǎn)(1)求的最大值、最小值及對應(yīng)的點(diǎn)坐標(biāo);(2)求的最小值及對應(yīng)的點(diǎn)的坐標(biāo)分析:本題考查橢圓中的最值問題,通常探求變量的最值有兩種方法:一是目標(biāo)函數(shù)當(dāng),即代數(shù)方法二是數(shù)形結(jié)合,即幾何方法本題若按先建立目標(biāo)函數(shù),再求最值,則不易解決;若抓住橢圓的定義,轉(zhuǎn)化目標(biāo),運(yùn)用數(shù)形結(jié)合,就能簡捷求解解:(1)如上圖,設(shè)是橢圓上任一點(diǎn),由,等號(hào)僅當(dāng)時(shí)成立,此時(shí)、共線由,等號(hào)僅當(dāng)時(shí)成立,此時(shí)、共線建立、的直線方程,解方程組得兩交點(diǎn)、綜上所述,點(diǎn)與重合時(shí),取最小值,點(diǎn)與重合時(shí),取最大值(2)如下圖,設(shè)是橢圓上任一點(diǎn),作垂直橢圓右準(zhǔn)線,為垂足,由,由橢圓第二定義知,要使其和最小需有、共線,即求到右準(zhǔn)線距離右準(zhǔn)線方程為到右準(zhǔn)線距離為此時(shí)點(diǎn)縱坐標(biāo)與點(diǎn)縱坐標(biāo)相同為1,代入橢圓得滿足條件的點(diǎn)坐標(biāo)說明:求的最小值,就是用第二定義轉(zhuǎn)化后,過向相應(yīng)準(zhǔn)線作垂線段巧用焦點(diǎn)半徑與點(diǎn)準(zhǔn)距互化是解決有關(guān)問題的重要手段典型例題十八例18 (1)寫出橢圓的參數(shù)方程;(2)求橢圓內(nèi)接矩形的最大面積分析:本題考查橢圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論