人教版九年級上第23.2 中心對稱1 .2.3.4課時教案_第1頁
人教版九年級上第23.2 中心對稱1 .2.3.4課時教案_第2頁
人教版九年級上第23.2 中心對稱1 .2.3.4課時教案_第3頁
人教版九年級上第23.2 中心對稱1 .2.3.4課時教案_第4頁
人教版九年級上第23.2 中心對稱1 .2.3.4課時教案_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、23.2 中心對稱(1)第一課時 教學內(nèi)容 兩個圖形關(guān)于這個點對稱或中心對稱、對稱中心、關(guān)于中心的對稱點等概念及其運用它們解決一些實際問題 教學目標 了解中心對稱、對稱中心、關(guān)于中心的對稱點等概念及掌握這些概念解決一些問題 復(fù)習運用旋轉(zhuǎn)知識作圖,旋轉(zhuǎn)角度變化,設(shè)計出不同的美麗圖案來引入旋轉(zhuǎn)180°的特殊旋轉(zhuǎn)中心對稱的概念,并運用它解決一些實際問題 重難點、關(guān)鍵 1重點:利用中心對稱、對稱中心、關(guān)于中心對稱點的概念解決一些問題 2難點與關(guān)鍵:從一般旋轉(zhuǎn)中導(dǎo)入中心對稱 教具、學具準備 小黑板、三角尺 教學過程 一、復(fù)習引入 請同學們獨立完成下題如圖,ABC繞點O旋轉(zhuǎn),使點A旋轉(zhuǎn)到點D處,

2、畫出旋轉(zhuǎn)后的三角形,并寫出簡要作法 老師點評:分析,本題已知旋轉(zhuǎn)后點A的對應(yīng)點是點D,且旋轉(zhuǎn)中心也已知,所以關(guān)鍵是找出旋轉(zhuǎn)角和旋轉(zhuǎn)方向顯然,逆時針或順時針旋轉(zhuǎn)都符合要求,一般我們選擇小于180°的旋轉(zhuǎn)角為宜,故本題選擇的旋轉(zhuǎn)方向為順時針方向;已知一對對應(yīng)點和旋轉(zhuǎn)中心,很容易確定旋轉(zhuǎn)角如圖,連結(jié)OA、OD,則AOD即為旋轉(zhuǎn)角接下來根據(jù)“任意一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角”和“對應(yīng)點到旋轉(zhuǎn)中心的距離相等”這兩個依據(jù)來作圖即可 作法:(1)連結(jié)OA、OB、OC、OD; (2)分別以O(shè)B、OB為邊作BOM=CON=AOD; (3)分別截取OE=OB,OF=OC; (4)依次連結(jié)

3、DE、EF、FD;即:DEF就是所求作的三角形,如圖所示 二、探索新知 問題:作出如圖的兩個圖形繞點O旋轉(zhuǎn)180°的圖案,并回答下列的問題: 1以O(shè)為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后兩個圖形是否重合?2各對稱點繞O旋轉(zhuǎn)180°后,這三點是否在一條直線上?老師點評:可以發(fā)現(xiàn),如圖所示的兩個圖案繞O旋轉(zhuǎn)180°都是重合的,即甲圖與乙圖重合,OAB與COD重合 像這樣,把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心 這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點 例1如圖,四邊形ABC

4、D繞D點旋轉(zhuǎn)180°,請作出旋轉(zhuǎn)后的圖案,寫出作法并回答 (1)這兩個圖形是中心對稱圖形嗎?如果是對稱中心是哪一點?如果不是,請說明理由(2)如果是中心對稱,那么A、B、C、D關(guān)于中心的對稱點是哪些點 分析:(1)根據(jù)中心對稱的定義便直接可知這兩個圖形是中心對稱圖形,對稱中心就是旋轉(zhuǎn)中心 (3)旋轉(zhuǎn)后的對應(yīng)點,便是中心的對稱點 解:作法:(1)延長AD,并且使得DA=AD (2)同樣可得:BD=BD,CD=CD(3)連結(jié)AB、BC、CD,則四邊形ABCD為所求的四邊形,如圖23-44所示 答:(1)根據(jù)中心對稱的定義便知這兩個圖形是中心對稱圖形,對稱中心是D點 (2)A、B、C、D關(guān)

5、于中心D的對稱點是A、B、C、D,這里的D與D重合例2如圖,已知AD是ABC的中線,畫出以點D為對稱中心,與ABD成中心對稱的三角形 分析:因為D是對稱中心且AD是ABC的中線,所以C、B為一對的對應(yīng)點,因此,只要再畫出A關(guān)于D的對應(yīng)點即可 解:(1)延長AD,且使AD=DA,因為C點關(guān)于D的中心對稱點是B(C),B點關(guān)于中心D的對稱點為C(B) (2)連結(jié)AB、AC則ABC為所求作的三角形,如圖所示 三、鞏固練習 教材P74 練習223.2 中心對稱(2)第二課時 教學內(nèi)容 1關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分 2關(guān)于中心對稱的兩個圖形是全等圖形 教學

6、目標 理解關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分;理解關(guān)于中心對稱的兩個圖形是全等圖形;掌握這兩個性質(zhì)的運用 復(fù)習中心對稱的基本概念(中心對稱、對稱中心,關(guān)于中心的對稱點),提出問題,讓學生分組討論解決問題,老師引導(dǎo)總結(jié)中心對稱的基本性質(zhì) 重難點、關(guān)鍵 1重點:中心對稱的兩條基本性質(zhì)及其運用 2難點與關(guān)鍵:讓學生合作討論,得出中心對稱的兩條基本性質(zhì) 教學過程 一、復(fù)習引入 (老師口問,學生口答) 1什么叫中心對稱?什么叫對稱中心? 2什么叫關(guān)于中心的對稱點? 3請同學隨便畫一三角形,以三角形一頂點為對稱中心,畫出這個三角形關(guān)于這個對稱中心的對稱圖形,并分組討

7、論能得到什么結(jié)論 (每組推薦一人上臺陳述,老師點評) (老師)在黑板上畫一個三角形ABC,分兩種情況作兩個圖形 (1)作ABC一頂點為對稱中心的對稱圖形; (2)作關(guān)于一定點O為對稱中心的對稱圖形 第一步,畫出ABC第二步,以ABC的C點(或O點)為中心,旋轉(zhuǎn)180°畫出AB和ABC,如圖1和用2所示 (1) (2) 從圖1中可以得出ABC與ABC是全等三角形; 分別連接對稱點AA、BB、CC,點O在這些線段上且O平分這些線段 下面,我們就以圖2為例來證明這兩個結(jié)論 證明:(1)在ABC和ABC中, OA=OA,OB=OB,AOB=AOB AOBAOB AB=AB 同理可證:AC=A

8、C,BC=BC ABCABC (2)點A是點A繞點O旋轉(zhuǎn)180°后得到的,即線段OA繞點O旋轉(zhuǎn)180°得到線段OA,所以點O在線段AA上,且OA=OA,即點O是線段AA的中點 同樣地,點O也在線段BB和CC上,且OB=OB,OC=OC,即點O是BB和CC的中點 因此,我們就得到 1關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分 2關(guān)于中心對稱的兩個圖形是全等圖形例1如圖,已知ABC和點O,畫出DEF,使DEF和ABC關(guān)于點O成中心對稱 分析:中心對稱就是旋轉(zhuǎn)180°,關(guān)于點O成中心對稱就是繞O旋轉(zhuǎn)180°,因此,我們連AO、B

9、O、CO并延長,取與它們相等的線段即可得到解:(1)連結(jié)AO并延長AO到D,使OD=OA,于是得到點A的對稱點D,如圖所示 (2)同樣畫出點B和點C的對稱點E和F (3)順次連結(jié)DE、EF、FD則DEF即為所求的三角形例2(學生練習,老師點評)如圖,已知四邊形ABCD和點O,畫四邊形ABCD,使四邊形ABCD和四邊形ABCD關(guān)于點O成中心對稱(只保留作圖痕跡,不要求寫出作法) 二、鞏固練習 教材P70 練習 四、歸納小結(jié)(學生總結(jié),老師點評) 本節(jié)課應(yīng)掌握: 中心對稱的兩條基本性質(zhì): 1關(guān)于中心對稱的兩個圖形,對應(yīng)點所連線都經(jīng)過對稱中心,而且被對稱中心所平分; 2關(guān)于中心對稱的兩個圖形是全等圖

10、形及其它們的應(yīng)用 五、布置作業(yè) 1教材P74 復(fù)習鞏固1 綜合運用6、71下面圖形中既是軸對稱圖形又是中心對稱圖形的是( ) A直角 B等邊三角形 C直角梯形 D兩條相交直線 2下列命題中真命題是( ) A兩個等腰三角形一定全等 B正多邊形的每一個內(nèi)角的度數(shù)隨邊數(shù)增多而減少 C菱形既是中心對稱圖形,又是軸對稱圖形 D兩直線平行,同旁內(nèi)角相等 3將矩形ABCD沿AE折疊,得到如圖的所示的圖形,已知CED=60°,則AED的大小是( )A60° B50° C75° D55°23.2 中心對稱(3)第三課時 教學內(nèi)容 1中心對稱圖形的概念 2對稱中心

11、的概念及其它們的運用 教學目標 了解中心對稱圖形的概念及中心對稱圖形的對稱中心的概念,掌握這兩個概念的應(yīng)用 復(fù)習兩個圖形關(guān)于中心對稱的有關(guān)概念,利用這個所學知識探索一個圖形是中心對稱圖形的有關(guān)概念及其它的運用 重難點、關(guān)鍵 1重點:中心對稱圖形的有關(guān)概念及其它們的運用 2難點與關(guān)鍵:區(qū)別關(guān)于中心對稱的兩個圖形和中心對稱圖形 教具、學具準備 小黑板、三角形 教學過程 一、復(fù)習引入 1(老師口問)口答:關(guān)于中心對稱的兩個圖形具有什么性質(zhì)? (老師口述):關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分 關(guān)于中心對稱的兩個圖形是全等圖形 2(學生活動)作圖題(1)作出線段A

12、O關(guān)于O點的對稱圖形,如圖所示(2)作出三角形AOB關(guān)于O點的對稱圖形,如圖所示 (2)延長AO使OC=AO, 延長BO使OD=BO, 連結(jié)CD則COD為所求的,如圖所示 二、探索新知 從另一個角度看,上面的(1)題就是將線段AB繞它的中點旋轉(zhuǎn)180°,因為OA=OB,所以,就是線段AB繞它的中點旋轉(zhuǎn)180°后與它重合上面的(2)題,連結(jié)AD、BC,則剛才的兩個關(guān)于中心對稱的兩個圖形,就成平行四邊形,如圖所示 AO=OC,BO=OD,AOB=COD AOBCOD AB=CD 也就是,ABCD繞它的兩條對角線交點O旋轉(zhuǎn)180°后與它本身重合 因此,像這樣,把一個圖形

13、繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心 (學生活動)例1:從剛才講的線段、平行四邊形都是中心對稱圖形外,每一位同學舉出三個圖形,它們也是中心對稱圖形 老師點評:老師邊提問學生邊解答 (學生活動)例2:請說出中心對稱圖形具有什么特點? 老師點評:中心對稱圖形具有勻稱美觀、平穩(wěn)例3求證:如圖任何具有對稱中心的四邊形是平行四邊形 分析:中心對稱圖形的對稱中心是對應(yīng)點連線的交點,也是對應(yīng)點間的線段中點,因此,直接可得到對角線互相平分 證明:如圖,O是四邊形ABCD的對稱中心,根據(jù)中心對稱性質(zhì),線段AC、BD必過點O

14、,且AO=CO,BO=DO,即四邊形ABCD的對角線互相平分,因此,四邊形ABCD是平行四邊形 三、鞏固練習 教材P72 練習 四、應(yīng)用拓展例4如圖,矩形ABCD中,AB=3,BC=4,若將矩形折疊,使C點和A點重合,求折痕EF的長 分析:將矩形折疊,使C點和A點重合,折痕為EF,就是A、C兩點關(guān)于O點對稱,這方面的知識在解決一些翻折問題中起關(guān)鍵作用,對稱點連線被對稱軸垂直平分,進而轉(zhuǎn)化為中垂線性質(zhì)和勾股定理的應(yīng)用,求線段長度或面積 解:連接AF, 點C與點A重合,折痕為EF,即EF垂直平分AC AF=CF,AO=CO,F(xiàn)OC=90°,又四邊形ABCD為矩形,B=90°,A

15、B=CD=3,AD=BC=4 設(shè)CF=x,則AF=x,BF=4-x, 由勾股定理,得AC2=BC2+AB2=52 AC=5,OC=AC= AB2+BF2=AF2 32+(4-x)=2=x2 x= FOC=90° OF2=FC2-OC2=()2-()2=()2 OF= 同理OE=,即EF=OE+OF= 五、歸納小結(jié)(學生歸納,老師點評) 本節(jié)課應(yīng)掌握: 1中心對稱圖形的有關(guān)概念; 2應(yīng)用中心對稱圖形解決有關(guān)問題 六、布置作業(yè)1教材P74 綜合運用5 P75 拓廣探索8、923.2 中心對稱(4)第四課時 教學內(nèi)容 兩個點關(guān)于原點對稱時,它們的坐標符號相反,即點P(x,y),關(guān)于原點的對

16、稱點為P(-x,-y)及其運用 教學目標 理解P與點P點關(guān)于原點對稱時,它們的橫縱坐標的關(guān)系,掌握P(x,y)關(guān)于原點的對稱點為P(-x,-y)的運用 復(fù)習軸對稱、旋轉(zhuǎn),尤其是中心對稱,知識遷移到關(guān)于原點對稱的點的坐標的關(guān)系及其運用 重難點、關(guān)鍵 1重點:兩個點關(guān)于原點對稱時,它們的坐標符號相反,即點P(x,y)關(guān)于原點的對稱點P(-x,-y)及其運用 2難點與關(guān)鍵:運用中心對稱的知識導(dǎo)出關(guān)于原點對稱的點的坐標的性質(zhì)及其運用它解決實際問題 教具、學具準備 小黑板、三角尺 教學過程 一、復(fù)習引入 (學生活動)請同學們完成下面三題1已知點A和直線L,如圖,請畫出點A關(guān)于L對稱的點A2如圖,ABC是

17、正三角形,以點A為中心,把ADC順時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形3如圖ABO,繞點O旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后的圖形 老師點評:老師通過巡查,根據(jù)學生解答情況進行點評(略) 二、探索新知 (學生活動)如圖23-74,在直角坐標系中,已知A(-3,1)、B(-4,0)、C(0,3)、D(2,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F點關(guān)于原點O的中心對稱點,并寫出它們的坐標,并回答:這些坐標與已知點的坐標有什么關(guān)系? 老師點評:畫法:(1)連結(jié)AO并延長AO (2)在射線AO上截取OA=OA (3)過A作ADx軸于D點,過A作ADx軸于點D ADO與A

18、DO全等 AD=AD,OA=OA A(3,-1) 同理可得B、C、D、E、F這些點關(guān)于原點的中心對稱點的坐標 (學生活動)分組討論(每四人一組):討論的內(nèi)容:關(guān)于原點作中心對稱時,它們的橫坐標與橫坐標絕對值什么關(guān)系?縱坐標與縱坐標的絕對值又有什么關(guān)系?坐標與坐標之間符號又有什么特點? 提問幾個同學口述上面的問題老師點評:(1)從上可知,橫坐標與橫坐標的絕對值相等,縱坐標與縱坐標的絕對值相等(2)坐標符號相反,即設(shè)P(x,y)關(guān)于原點O的對稱點P(-x,-y)兩個點關(guān)于原點對稱時,它們的坐標符號相反,即點P(x,y)關(guān)于原點O的對稱點P(-x,-y) 例1如圖,利用關(guān)于原點對稱的點的坐標的特點,作出與線段AB關(guān)于原點對稱的圖形 分析:要作出線段AB關(guān)于原點的對稱線段,只要作出點A、點B關(guān)于原點的對稱點A、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論