微積分基本定理教案_第1頁
微積分基本定理教案_第2頁
微積分基本定理教案_第3頁
微積分基本定理教案_第4頁
微積分基本定理教案_第5頁
已閱讀5頁,還剩5頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第五章 定積分及其應(yīng)用第三節(jié) 微積分基本定理教 學(xué) 基 本 信 息教學(xué)課題第三節(jié) 微積分基本定理教學(xué)時(shí)間45分鐘教學(xué)重點(diǎn)微積分基本公式教學(xué)對象高職高專學(xué)生教學(xué)難點(diǎn)變上限積分函數(shù)及導(dǎo)數(shù)教學(xué)內(nèi)容1.變上限積分函數(shù)的定義.2.變上限積分函數(shù)的導(dǎo)數(shù).3 .微積分基本定理.教學(xué)要求1.理解變上限積分函數(shù)定義及其導(dǎo)數(shù);2.熟練掌握牛頓萊布尼茲公式的應(yīng)用 .雙語教學(xué)微積分:Calculus; 變上限積分函數(shù):Integration of variable upper limit function ;導(dǎo)數(shù)Derivative; 牛頓萊布尼茲:Newton-Leibniz.教 學(xué) 過 程一、復(fù)習(xí)1. 定積分的定

2、義2. 定積分的幾何意義3定積分的性質(zhì) 二、引入新課 一蝴蝶在一正弦形花帶中飛行,求蝴蝶活動(dòng)的區(qū)域面積? 問題1:蝴蝶活動(dòng)的區(qū)域面積如何表示?學(xué)生回答:問題2:能否用定積分的定義求出積分值? 學(xué)生回答:不能。因?yàn)樵谇蠓e分和時(shí)不易計(jì)算。有沒有簡單的方法求出這個(gè)積分值呢?有。通過“微積分基本定理”的學(xué)習(xí)。我們將給出求定積分的一種簡單方法。三、探究感性認(rèn)識(shí)變上限積分函數(shù)備 注引入問題,激起興趣,案例教學(xué)法2 / 10例如 下限是一常數(shù),給出一個(gè)上限,通過求對應(yīng)的定積分.有唯一確定的一個(gè)積分值與之對應(yīng). 是一個(gè)以為自變量的函數(shù)。1、變上限積分函數(shù)的定義定義1:設(shè)為區(qū)間上的連續(xù)函數(shù),任取與之對應(yīng).這種對

3、應(yīng)滿足函數(shù)的定義.因此,它是定義在區(qū)間上的函數(shù).記為: b (其幾何意義如圖)例1 判斷下列函數(shù)是否為變上限積分函數(shù) (提問學(xué)生,詢問原因)通過例題講解.使學(xué)生進(jìn)一步體會(huì)變上限積分函數(shù)的特征: 下限是一常數(shù),上限只有一個(gè)自變量.同時(shí),這是一類函數(shù).這類函數(shù)如同其它函數(shù)一樣,可以計(jì)算求其定義域,值域在這我們根據(jù)需要,只學(xué)習(xí)它的一條性質(zhì)-導(dǎo)數(shù).從而引出2、變上限積分函數(shù)的導(dǎo)數(shù)對于定理的證明不要求掌握.例2 求下列函數(shù)的導(dǎo)數(shù) 提問學(xué)生,詢問原因提問學(xué)生,詢問原因教師根據(jù)學(xué)生回答總結(jié)答案(提問學(xué)生,詢問原因)例3 該題進(jìn)一步深化對變上限積分函數(shù)是一類函數(shù)的理解.同時(shí)加深了變上限積分函數(shù)的性質(zhì)的應(yīng)用.定

4、理2(原函數(shù)存在定理)定理的重要意義:(1)肯定了連續(xù)函數(shù)的原函數(shù)是存在的.(2)初步揭示了積分學(xué)中的定積分與原函數(shù)之間的聯(lián)系.3、微積分基本定理如果是連續(xù)函數(shù)在區(qū)間上的一個(gè)原函數(shù)。則證 已知是的一個(gè)原函數(shù),又 也是的一個(gè)原函數(shù), 令令例4 例5 問題驅(qū)動(dòng)法(加深理解)例4的選取主要熟悉公式 例6解對本節(jié)開始引例的解答一蝴蝶在一正弦形花帶中飛行,求蝴蝶活動(dòng)的區(qū)域面積?四、課堂練習(xí) (分組練習(xí),教師答疑) 五、課堂小結(jié)本節(jié)通過幾個(gè)例子的講解,輕而易舉推出變上限積分函數(shù)的概念;學(xué)習(xí)了變上限積分函數(shù)的導(dǎo)數(shù).在此基礎(chǔ)上推出了微積分基本公式.提問學(xué)生,引起對使用條件的重視學(xué)生解答 練習(xí)法(鞏固知識(shí))1.變上限積分函數(shù):2.變上限積分函數(shù)的導(dǎo)數(shù):3.微積分基本公式:六、作業(yè)布置 課下預(yù)習(xí)定積分的積分方法七、教學(xué)反思通過幾個(gè)例子,讓學(xué)生感知到定積分的基本思想,并不需要嚴(yán)格的證明,體現(xiàn)了新課標(biāo)中對高職高專學(xué)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論