下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、1.4.1全稱量詞與存在量詞(一)量詞教學目標:了解量詞在日常生活中和數(shù)學命題中的作用,正確區(qū)分全稱量詞和存在量詞的概念,并能準確使用和理解兩類量詞。教學重點:理解全稱量詞、存在量詞的概念區(qū)別;教學難點:正確使用全稱命題、存在性命題;課 型:新授課教學手段:多媒體教學過程:一、創(chuàng)設情境在前面的學習過程中,我們曾經(jīng)遇到過一類重要的問題:給含有“至多、至少、有一個”等量詞的命題進行否定,確定它們的非命題。大家都曾感到困惑和無助,今天我們將專門學習和討論這類問題,以解心中的郁結。問題1:請你給下列劃橫線的地方填上適當?shù)脑~一 紙;一 牛;一 狗;一 馬;一 人家;一 小船張頭條匹戶葉什么是量詞?這些表
2、示人、事物或動作的單位的詞稱為量詞。漢語的物量詞紛繁復雜,又有兼表形象特征的作用,選用時主要應該講求形象性,同時要遵從習慣性,并注意靈活性。不遵守量詞使用的這些原則,就會鬧出“一匹牛”“一頭狗”“一只魚”的笑話來。二、活動嘗試所有已知人類語言都使用量化,即使是那些沒有完整的數(shù)字系統(tǒng)的語言,量詞是人們相互交往的重要詞語。我們今天研究的量詞不是究其語境和使用習慣問題,而是更多的給予它數(shù)學的意境。問題2:下列命題中含有哪些量詞?(1)對所有的實數(shù)x,都有x20;(2)存在實數(shù)x,滿足x20;(3)至少有一個實數(shù)x,使得x220成立;(4)存在有理數(shù)x,使得x220成立;(5)對于任何自然數(shù)n,有一個
3、自然數(shù)s 使得 s = n × n;(6)有一個自然數(shù)s 使得對于所有自然數(shù)n,有 s = n × n;上述命題中含有:“所有的”、“存在”、“至少”、“任何”等表示全體和部分的量詞。三、師生探究命題中除了主詞、謂詞、聯(lián)詞以外,還有量詞。命題的量詞,表示的是主詞數(shù)量的概念。在謂詞邏輯中,量詞被分為兩類:一類是全稱量詞,另一類是存在量詞。 全稱量詞:如“所有”、“任何”、“一切”等。其表達的邏輯為:“對宇宙間的所有事物x來說,x都是F?!崩洌骸八械聂~都會游泳?!贝嬖诹吭~:如“有”、“有的”、“有些”等。其表達的邏輯為:“宇宙間至少有一個事物x,x是F?!崩洌骸坝械墓こ處?/p>
4、是工人出身?!焙辛吭~的命題通常包括單稱命題、特稱命題和全稱命題三種。 單稱命題:其公式為“(這個)S是P”。例句:“這件事是我經(jīng)辦的?!眴畏Q命題表示個體,一般不需要量詞標志,有時會用“這個”“某個”等。在三段論中是作為全稱命題來處理的。全稱命題:其公式為“所有S是P”。例句:“所有產(chǎn)品都是一等品”。全稱命題,可以用全稱量詞,也可以用“都”等副詞、“人人”等主語重復的形式來表達,甚至有時可以沒有任何的量詞標志,如“人類是有智慧的?!碧胤Q命題:其公式為“有的S是P”。例句:“大多數(shù)學生星期天休息”。特稱命題使用存在量詞,如“有些”、“很少”等,也可以用“基本上”、“一般”、“只是有些”等。含有存
5、在性量詞的命題也稱存在性命題。問題3:判斷下列命題是全稱命題,還是存在性命題? (1)方程2x=5只有一解;(2)凡是質數(shù)都是奇數(shù);(3)方程2x21=0有實數(shù)根;(4)沒有一個無理數(shù)不是實數(shù);(5)如果兩直線不相交,則這兩條直線平行;(6)集合AB是集合A的子集;分析:(1)存在性命題;(2)全稱命題;(3)存在性命題;(4)全稱命題;(5)全稱命題;(6)全稱命題;四、數(shù)學理論1開語句:語句中含有變量x或y,在沒有給定這些變量的值之前,是無法確定語句真假的這種含有變量的語句叫做開語句。如,x<2,x-5=3,(x+y)(x-y)=0.2表示個體常項或變項之間數(shù)量關系的詞為量詞。量詞可
6、分兩種: (1) 全稱量詞 日常生活和數(shù)學中所用的“一切的”,“所有的”,“每一個”,“任意的”,“凡”,“都”等詞可統(tǒng)稱為全稱量詞,記作、等,表示個體域里的所有個體。 (2) 存在量詞日常生活和數(shù)學中所用的“存在”,“有一個”,“有的”,“至少有一個”等詞統(tǒng)稱為存在量詞,記作,等,表示個體域里有的個體。3含有全稱量詞的命題稱為全稱命題,含有存在量詞的命題稱為存在性稱命題。 全稱命題的格式:“對M中的所有x,p(x)”的命題,記為:存在性命題的格式:“存在集合M中的元素x,q(x)”的命題,記為:注:全稱量詞就是“任意”,寫成上下顛倒過來的大寫字母A,實際上就是英語"any"
7、;中的首字母。存在量詞就是“存在”、“有”,寫成左右反過來的大寫字母E,實際上就是英語"exist"中的首字母。存在量詞的“否”就是全稱量詞。五、鞏固運用例1判斷以下命題的真假:(1) (2) (3) (4)分析:(1)真;(2)假;(3)假;(4)真;例2指出下述推理過程的邏輯上的錯誤:第一步:設a=b,則有a2=ab 第二步:等式兩邊都減去b2,得a2-b2=ab-b2第三步:因式分解得 (a+b)(a-b)=b(a-b) 第四步:等式兩邊都除以a-b得,a+b=b第五步:由a=b代人得,2b=b第六步:兩邊都除以b得,2=1分析:第四步錯:因a-b0,等式兩邊不能除以
8、a-b 第六步錯:因b可能為0,兩邊不能立即除以b,需討論。心得:(a+b)(a-b)=b(a-b) a+b=b是存在性命題,不是全稱命題,由此得到的結論不可靠。同理,由2b=b2=1是存在性命題,不是全稱命題。例3判斷下列語句是不是全稱命題或者存在性命題,如果是,用量詞符號表達出來。(1)中國的所有江河都注入太平洋;(2)0不能作除數(shù);(3)任何一個實數(shù)除以1,仍等于這個實數(shù);(4)每一個向量都有方向;分析:(1)全稱命題,河流x中國的河流,河流x注入太平洋;(2)存在性命題,0R,0不能作除數(shù);(3)全稱命題, xR,;(4)全稱命題,有方向;六、回顧反思要判斷一個存在性命題為真,只要在給
9、定的集合中找到一個元素x,使命題p(x)為真;要判斷一個存在性命題為假,必須對在給定集合的每一個元素x,使命題p(x)為假。要判斷一個全稱命題為真,必須對在給定集合的每一個元素x,使命題p(x)為真;但要判斷一個全稱命題為假時,只要在給定的集合中找到一個元素x,使命題p(x)為假。即全稱命題與存在性命題之間有可能轉化,它們之間并不是對立的關系。七、課后練習1判斷下列全稱命題的真假,其中真命題為( )A所有奇數(shù)都是質數(shù) BC對每個無理數(shù)x,則x2也是無理數(shù) D每個函數(shù)都有反函數(shù)2將“x2+y22xy”改寫成全稱命題,下列說法正確的是( )A,都有 B,都有C,都有 D,都有3判斷下列命題的真假,其中為真命題的是A BC D4下列命題中的假命題是( )A存在實數(shù)和,使cos(+)=coscos+sinsinB不存在無窮多個和,使cos(+)=coscos+sinsinC對任意和,使cos(+)=coscossinsinD不存在這樣的和,使cos(+)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 成都職業(yè)技術學院《金屬材料數(shù)值模擬基礎》2023-2024學年第一學期期末試卷
- 二零二五年度個人債務轉讓協(xié)議范本:債務轉讓的合同起草與簽署技巧3篇
- 二零二五年度冷鏈企業(yè)冷庫設備采購與技術培訓合同2篇
- 2024年廣播行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 新質生產(chǎn)力促進高質量發(fā)展的路徑設計與實施方案
- 2025版觀光電梯安裝安全責任協(xié)議書二零二五年度6篇
- 深度解析2024年公務員錄用規(guī)定
- 2025年度勞動合同法在員工薪酬福利體系中的應用合同2篇
- 二零二五年度公司設備租賃與技術輸出合同3篇
- 2025版新能源汽車電池技術入股合作協(xié)議3篇
- 工程制圖復習題(帶答案)
- 風管采購安裝合同范例
- GB/T 21099.2-2024企業(yè)系統(tǒng)中的設備和集成過程控制用功能塊(FB)和電子設備描述語言(EDDL)第2部分:FB概念規(guī)范
- 期末模擬練習(試題)(含答案)-2024-2025學年三年級上冊數(shù)學西師大版
- 2024年黑龍江農(nóng)業(yè)工程職業(yè)學院單招職業(yè)適應性測試題庫
- 企業(yè)法律顧問詳細流程
- 云數(shù)據(jù)中心建設項目可行性研究報告
- 《新生兒視網(wǎng)膜動靜脈管徑比的形態(tài)學分析及相關性研究》
- 無重大疾病隱瞞保證書
- 2024年春概率論與數(shù)理統(tǒng)計學習通超星期末考試答案章節(jié)答案2024年
- 企業(yè)形象設計(CIS)戰(zhàn)略策劃及實施計劃書
評論
0/150
提交評論