版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、線段的垂直平分線中考題(含答案)一填空題(共7小題)1(2011長春)如圖,在ABC中,B=30°,ED垂直平分BC,ED=3則CE長為_2(2011萊蕪)如圖,在ABC中,AB=BC,B=120°,AB的垂直平分線交AC于點D若AC=6cm,則AD=_cm3如圖,等邊DEF的頂點分別在等邊ABC各邊上,且DEBC于E,若AB=1,則DB=_4如圖,在等邊三角形ABC的邊BC、AC上分別取點D、E,使BD=CE,AD與BE相交于點P則APE的度數為_°5如圖,D是等邊ABC的AC邊上的中點,點E在BC的延長線上,DE=DB,ABC的周長是9,則E=_°,
2、CE=_6如圖,ABC中,C=90°,ABC=60°,BD平分ABC,若AD=8cm,則CD=_二解答題(共1小題)7(2011香洲區(qū)一模)ABC是等腰三角形,AB=AC,A=36°(1)利用尺規(guī)作B的角平分線BD,交AC于點D;(保留作圖痕跡,不寫作法)(2)判斷DBC是否為等腰三角形,并說明理由參考答案與試題解析一填空題(共7小題)1(2011長春)如圖,在ABC中,B=30°,ED垂直平分BC,ED=3則CE長為6考點:線段垂直平分線的性質;含30度角的直角三角形菁優(yōu)網版權所有分析:由ED垂直平分BC,即可得BE=CE,EDB=90°,又
3、由直角三角形中30°角所對的直角邊是其斜邊的一半,即可求得BE的長,則問題得解解答:解:ED垂直平分BC,BE=CE,EDB=90°,B=30°,ED=3,BE=2DE=6,CE=6故答案為:6點評:此題考查了線段垂直平分線的性質與直角三角形的性質解題的關鍵是數形結合思想的應用2(2011萊蕪)如圖,在ABC中,AB=BC,B=120°,AB的垂直平分線交AC于點D若AC=6cm,則AD=2cm考點:線段垂直平分線的性質;三角形內角和定理;等腰三角形的性質;含30度角的直角三角形菁優(yōu)網版權所有專題:計算題分析:連接BD,根據三角形的內角和定理和等腰三角形
4、性質求出DC=2BD,根據線段垂直平分線的性質求出AD=BD,即可求出答案解答:解:連接BDAB=BC,ABC=120°,A=C=(180°ABC)=30°,DC=2BD,AB的垂直平分線是DE,AD=BD,DC=2AD,AC=6,AD=×6=2,故答案為:2點評:本題主要考查對等腰三角形的性質,含30度角的直角三角形,線段的垂直平分線,三角形的內角和定理等知識點的理解和掌握,能求出AD=BD和DC=2BD是解此題的關鍵3如圖,等邊DEF的頂點分別在等邊ABC各邊上,且DEBC于E,若AB=1,則DB=考點:等邊三角形的性質;全等三角形的判定與性質;勾股
5、定理菁優(yōu)網版權所有分析:由題可證BEDADFCFE,則AD=BE,由勾股定理得,BE=BD,因為AB=BD+AD=BD+BE=BD+=1,所以BD=解答:解:DEB=90°BDE=90°60°=30°ADF=18030°60°=90°同理EFC=90°又A=B=C,DE=DF=EFBEDADFCFEAD=BE,由勾股定理得:BE=AB=BD+AD=BD+BE=BD+=1BD=點評:本題利用了:(1)等邊三角形的性質,(2)勾股定理,(3)全等三角形的判定和性質5如圖,在等邊三角形ABC的邊BC、AC上分別取點D、E
6、,使BD=CE,AD與BE相交于點P則APE的度數為60°考點:等邊三角形的性質;全等三角形的判定與性質菁優(yōu)網版權所有專題:計算題分析:根據BD=CE可得CD=AE,即可證明ACDBAE,得CAD=ABE,再根據內角和為180°的性質即可解題解答:解:BD=CE,BCBD=ACCE,即CD=AE,在ACD與BAE中,ACDBAE(SAS),CAD=ABE,CAD+APE+AEB=180°,ABE+BAE+AEB=180°,APE=BAE=60°,故答案為:60點評:本題考查了等邊三角形各內角為60°的性質,考查了全等三角形的證明和全等
7、三角形對應角相等的性質,本題中求證APE=BAE是解題的關鍵6如圖,D是等邊ABC的AC邊上的中點,點E在BC的延長線上,DE=DB,ABC的周長是9,則E=30°,CE=考點:等邊三角形的性質菁優(yōu)網版權所有專題:綜合題分析:由ABC為等邊三角形,且BD為邊AC的中線,根據“三線合一”得到BD平分ABC,而ABC為60°,得到DBE為30°,又因為DE=DB,根據等邊對等角得到E與DBE相等,故E也為30°;由等邊三角形的三邊相等且周長為9,求出AC的長為3,且ACB為60°,根據ACB為DCE的外角,根據三角形的外角等于與它不相鄰的兩個內角之
8、和,求出CDE也為30°,根據等角對等邊得到CD=CE,都等于邊長AC的一半,從而求出CE的值解答:解:ABC為等邊三角形,D為AC邊上的中點,BD為ABC的平分線,且ABC=60°,即DBE=30°,又DE=DB,E=DBE=30°,等邊ABC的周長為9,AC=3,且ACB=60°,CDE=ACBE=30°,即CDE=E,CD=CE=AC=故答案為:30;點評:此題考查了等邊三角形的性質,利用等邊三角形的性質可以解決角與邊的有關問題,尤其注意等腰三角形“三線合一”性質的運用,及“等角對等邊”、“等邊對等角”的運用7如圖,ABC中,C
9、=90°,ABC=60°,BD平分ABC,若AD=8cm,則CD=4cm考點:含30度角的直角三角形菁優(yōu)網版權所有分析:根據三角形的內角和定理求出A=30°,求出ABD=CBD=A=30°,求出AD=BD,CD=BD,代入求出即可解答:解:C=90°,ABC=60°,A=30°,BD平分CBD,CBD=ABD=30°,CD=BD,A=ABD,AD=BD=8cm,CD=4cm,故答案為:4cm點評:本題考查了含30度角的直角三角形,三角形的內角和定理等知識點,關鍵是求出AD=BD和CD=BD,題目比較典型,難度適中二
10、解答題(共1小題)8(2011香洲區(qū)一模)ABC是等腰三角形,AB=AC,A=36°(1)利用尺規(guī)作B的角平分線BD,交AC于點D;(保留作圖痕跡,不寫作法)(2)判斷DBC是否為等腰三角形,并說明理由考點:等腰三角形的判定與性質;三角形內角和定理;角平分線的性質;作圖基本作圖菁優(yōu)網版權所有專題:作圖題;證明題分析:(1)以B為圓心,以任意長為半徑畫弧交AB、AC于兩點,再以這兩點為圓心,以大于這兩點的距離的一半為半徑畫弧,交于一點,過這點和B作直線即可;(2)由A=36°,求出C、ABC的度數,能求出ABD和CBD的度數,即可求出BDC,根據等角對等邊即可推出答案解答:(1)解:如圖所示:(2)解:BCD是等腰三角形理由如下:AB=AC,A=36°,ABC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高科技企業(yè)應收賬款質押擔保合同樣本3篇
- 二零二五版高校學術期刊合作承包出版合同3篇
- 2025版衛(wèi)生院與鄉(xiāng)村醫(yī)生合作協議書3篇
- 二零二五版旅游導購人員派遣合同2篇
- 2025年度跨境電商進口商品質量擔保合同4篇
- 二零二五年車抵押貸款提前還款合同模板3篇
- 2025版無人配送機器人運營免責條款合同范本4篇
- 二零二五版企業(yè)班車租賃及節(jié)能減排服務合同3篇
- 二零二五年度透水混凝土工程市場營銷合作協議2篇
- 第一人民醫(yī)院二零二五年度進修人員醫(yī)療質量管理與服務協議3篇
- 第1課 隋朝統一與滅亡 課件(26張)2024-2025學年部編版七年級歷史下冊
- 2025-2030年中國糖醇市場運行狀況及投資前景趨勢分析報告
- 冬日暖陽健康守護
- 水處理藥劑采購項目技術方案(技術方案)
- 2024級高一上期期中測試數學試題含答案
- 山東省2024-2025學年高三上學期新高考聯合質量測評10月聯考英語試題
- 不間斷電源UPS知識培訓
- 三年級除法豎式300道題及答案
- 品學課堂新范式
- GB/T 1196-2023重熔用鋁錠
- 幼兒園教師培訓:計數(數數)的核心經驗
評論
0/150
提交評論