下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、雙曲線及其標(biāo)準(zhǔn)方程一、學(xué)習(xí)目標(biāo):【知識與技能】:1、通過教學(xué), 使學(xué)生熟記雙曲線的定義及其標(biāo)準(zhǔn)方程, 并理解這一定義及其標(biāo)準(zhǔn)方程的探索推導(dǎo)過程.2、理解并熟記雙曲線的焦點位置與兩類標(biāo)準(zhǔn)方程之間的對應(yīng)關(guān)系.【過程與方法】:通過“實驗觀察”、 “思考探究”與“合作交流”等一系列數(shù)學(xué)活動 , 培養(yǎng)學(xué)生觀察、類比、 分析、 概括的能力以及邏輯思維的能力, 使學(xué)生學(xué)會數(shù)學(xué)思考與推理, 學(xué)會反思與感悟形成良好的數(shù)學(xué)觀.【情感、態(tài)度與價值觀】:通過實例的引入和剖析, 讓學(xué)生再一次感受到數(shù)學(xué)來源于實踐又反作用于實踐; 生活中處處有數(shù)學(xué).二、學(xué)情分析:1、在學(xué)生已學(xué)習(xí)橢圓的定義及其標(biāo)準(zhǔn)方程和掌握“曲線的方程”與
2、“方程的曲線”的概念之后, 學(xué)習(xí)雙曲線定義及其標(biāo)準(zhǔn)方程, 符合學(xué)生的認(rèn)知規(guī)律, 學(xué)生有能力學(xué)好本節(jié)內(nèi)容;2、 由于學(xué)生數(shù)學(xué)運算能力不強(qiáng), 分析問題、解決問題的能力, 邏輯推理能力, 思維能力都比較弱 , 所以在設(shè)計的時候往往要多作鋪墊, 掃清他們學(xué)習(xí)上的障礙, 保護(hù)他們學(xué)習(xí)的積極性增強(qiáng)學(xué)習(xí)的主動性.三、重點難點:教學(xué)重點: 雙曲線的定義、標(biāo)準(zhǔn)方程教學(xué)難點: 雙曲線定義中關(guān)于絕對值,2a<2c 的理解三、教學(xué)過程:【導(dǎo)入】1、 以平面截圓錐為模型,讓學(xué)生認(rèn)識雙曲線,認(rèn)識圓錐曲線;2、 觀察生活中的雙曲線;【設(shè)計意圖: 讓學(xué)生對圓錐曲線整體有所把握, 體會數(shù)學(xué)來源于生活. 】探究一活動 1:
3、類比橢圓的學(xué)習(xí),思考:研究雙曲線,應(yīng)該研究什么?怎么研究?從而掌握本節(jié)課的主線:實驗、雙曲線的定義、建系、求雙曲線的標(biāo)準(zhǔn)方程;活動二 :數(shù)學(xué)實驗:(1)取一條拉鏈,拉開它的一部分,(2)在拉鏈拉開的兩邊上各取一點,分別固定在點 F1, F2 上,(3)把筆尖放在拉頭點M 處, 隨著拉鏈逐漸拉開或者閉攏,筆尖所經(jīng)過的點就回出一條曲線。(4)若拉鏈上被固定的兩點互換,則出現(xiàn)什么情況?學(xué)生活動:六人一組,進(jìn)行實驗,展示實驗成果:【設(shè)計意圖:學(xué)生親手操作,加深對雙曲線的了解,培養(yǎng)小組合作精神學(xué)生實驗可能出現(xiàn)的情況:畫出雙曲線的居多,但還是有畫出中垂線, 或者兩條射線的可能, 學(xué)生展示,小組同學(xué)解釋,
4、為什么會出現(xiàn)這種情況?【設(shè)計意圖:讓學(xué)生在“實驗”、“思考”等活動中,自己發(fā)現(xiàn)問題、提出問題】活動三:幾何畫板演示,得到雙曲線的定義:老師演示,學(xué)生思考:<1 >在作圖的過程中哪蛆量是變量?哪些星是定展? 動點在運動過程中滿足什么條件?(2)若拉住上被固定的兩點互換,則動點滿足什么條件?引導(dǎo)學(xué)生結(jié)合實驗分析,得出雙曲線上的點滿足的條件,給出雙曲線的定義雙曲線:平面內(nèi)到兩定點的距離的距離的差的絕對值等于定長2a (小于兩定點 F1F2的距離)的點的軌跡叫做雙曲線。兩定點F1F2叫做雙曲線的焦點兩點間F1F2的距離叫做焦距在雙曲線定義中,請同學(xué)們思考下面問題:1:聯(lián)想到橢圓的定義,你是
5、否感到雙曲線中的常數(shù)2a也需要某種限制?為什么?2:若2a=2c,則M點的軌跡又會是什么呢 ?又2a>2c呢?強(qiáng)調(diào):2a大于|F 1F2 I時軌跡不存在2a 等于IF1F2 I時,時兩條射線。所以,軌跡為雙曲線,必需限制2a<2c,且2aw0.學(xué)生第一次修改定義.(2a<2c,非零常數(shù))【設(shè)計意圖:,讓學(xué)生體會雙曲線上的點的運動規(guī)律,積累感性經(jīng)驗,通過實踐思考,為進(jìn)一步上升到理論做準(zhǔn)備.探究二活動四:探究雙曲線標(biāo)準(zhǔn)方程:1、類比:類比橢圓標(biāo)準(zhǔn)方程的建立過程(用屏幕顯示圖形,讓學(xué)生認(rèn)真捉摸坐標(biāo)系的位置特 點(力求使其方程形式最簡單).2、合作:師生合作共同推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程.
6、(學(xué)生推導(dǎo),然后教師歸納)按下列四步驟進(jìn)行:建系、設(shè)點、列式、化簡從而得出了雙曲線的標(biāo)準(zhǔn)方程雙曲線標(biāo)準(zhǔn)方程:焦點在x軸上(a>0,b>0)3、探究:在建立橢圓的標(biāo)準(zhǔn)方程時,選取不同的坐標(biāo)系我們得到了不同形式的標(biāo)準(zhǔn)方程.那么雙曲線的標(biāo)準(zhǔn)方程還有哪些形式 ?在 y 軸上(a>0,b>0) 其中:c 2=a2+b2活動五:歸納、總結(jié)活動六:典例分析例1:已知雙曲線的兩個焦點分別為F1(-5,0),F2(5,0),雙曲線上的點P到F1、F2距離差的絕對值等于6,求雙曲線標(biāo)準(zhǔn)方程.變式(1):已知雙曲線的兩個焦點分別為F1(-5,0),F2(5,0),雙曲線上的點 P到F1、F2距離差等于6,求雙曲線標(biāo)準(zhǔn)方程.變式(2):若兩定點為|F1F2|=10則軌跡方程如何?感悟:求給定雙曲線的標(biāo)準(zhǔn)方程的基本方法是:待定系數(shù)法.(若焦點不定,則要注意分類討論的思想.)【設(shè)計意圖:教學(xué)過程是師生互相交流、共同參與的過程.數(shù)學(xué)通過交流,才
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)前教育學(xué)第一章測試題
- (安徽卷)2025年中考地理第二次模擬考試(參考答案)
- 2024年公務(wù)員考試建甌市《行政職業(yè)能力測驗》巔峰沖刺試卷含解析
- 2024年二級建造師之二建礦業(yè)工程實務(wù)考試題庫含答案【達(dá)標(biāo)題】
- 2025年湖南岳陽市屈原管理區(qū)城市建設(shè)投資有限公司招聘筆試參考題庫附帶答案詳解
- 2025年人保財險嘉興市分公司招聘筆試參考題庫含答案解析
- 2025年榆林圓恒能源有限公司招聘筆試參考題庫含答案解析
- 2025年重慶中江船業(yè)有限公司招聘筆試參考題庫含答案解析
- 2025年田市園林花卉有限公司招聘筆試參考題庫含答案解析
- 人工智能在心理健康診斷中的應(yīng)用潛力:混合研究方法分析
- 小學(xué)一年級英語1a期末學(xué)業(yè)評價方案
- 勞務(wù)派遣勞務(wù)外包服務(wù)方案(技術(shù)方案)
- 2023年藥品注冊專員年度總結(jié)及來年計劃
- 圖紙標(biāo)注常見問題和要求國家標(biāo)準(zhǔn)新版
- 軟件無線電原理與應(yīng)用第3版 課件 第4-6章 軟件無線電硬件平臺設(shè)計、軟件無線電信號處理算法、信道編譯碼技術(shù)
- 兒童ERCP的應(yīng)用及技巧課件
- 《低壓電工技術(shù)》課程標(biāo)準(zhǔn)
- 22G101系列圖集常用點全解讀
- (國家基本公共衛(wèi)生服務(wù)項目第三版)7高血壓患者健康管理服務(wù)規(guī)范
- 12 富起來到強(qiáng)起來 精神文明新風(fēng)尚(說課稿)-部編版道德與法治五年級下冊
- 中級消防維保理論考試試題題庫及答案
評論
0/150
提交評論