下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、高中數(shù)學選修2-2知識點第一章 導數(shù)及其應用一 導數(shù)概念的引入1. 導數(shù)的物理意義:瞬時速率。一般的,函數(shù)在處的瞬時變化率是,我們稱它為函數(shù)在處的導數(shù),記作或,即=2. 導數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當點趨近于時,直線與曲線相切。容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導數(shù)就是切線PT的斜率k,即3. 導函數(shù):當x變化時,便是x的一個函數(shù),我們稱它為的導函數(shù). 的導函數(shù)有時也記作,即二.導數(shù)的計算1)基本初等函數(shù)的導數(shù)公式:1若(c為常數(shù)),則;2 若,則;3 若,則4 若,則;5 若,則6 若,則7 若,則8 若,則2)導數(shù)的運算法則1. 2. 3. 3)復合函數(shù)
2、求導和,稱則可以表示成為的函數(shù),即為一個復合函數(shù)三.導數(shù)在研究函數(shù)中的應用1.函數(shù)的單調性與導數(shù): 一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系:在某個區(qū)間內,如果,那么函數(shù)在這個區(qū)間單調遞增;如果,那么函數(shù)在這個區(qū)間單調遞減.2.函數(shù)的極值與導數(shù)極值反映的是函數(shù)在某一點附近的大小情況.求函數(shù)的極值的方法是:(1) 如果在附近的左側,右側,那么是極大值;(2) 如果在附近的左側,右側,那么是極小值;4.函數(shù)的最大(小)值與導數(shù)函數(shù)極大值與最大值之間的關系.求函數(shù)在上的最大值與最小值的步驟(1) 求函數(shù)在內的極值;(2) 將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小
3、值.四.生活中的優(yōu)化問題利用導數(shù)的知識,求函數(shù)的最大(小)值,從而解決實際問題第二章 推理與證明推理與證明推理證明合情推理演繹推理直接證明數(shù)學歸納法間接證明 比較法類比推理歸納推理 分析法 綜合法 反證法知識結構1、歸納推理把從個別事實中推演出一般性結論的推理,稱為歸納推理(簡稱歸納).簡言之,歸納推理是由部分到整體、由特殊到一般的推理。歸納推理的一般步驟:通過觀察個別情況發(fā)現(xiàn)某些相同的性質; 從已知的相同性質中推出一個明確表述的一般命題(猜想);證明(視題目要求,可有可無).2、類比推理由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理(簡
4、稱類比)簡言之,類比推理是由特殊到特殊的推理.類比推理的一般步驟:找出兩類對象之間可以確切表述的相似特征;用一類對象的已知特征去推測另一類對象的特征,從而得出一個猜想;檢驗猜想。3、合情推理歸納推理和類比推理都是根據(jù)已有的事實,經過觀察、分析、比較、聯(lián)想,再進行歸納、類比,然后提出猜想的推理.歸納推理和類比推理統(tǒng)稱為合情推理,通俗地說,合情推理是指“合乎情理”的推理.4、演繹推理從一般性的原理出發(fā),推出某個特殊情況下的結論,這種推理稱為演繹推理簡言之,演繹推理是由一般到特殊的推理.演繹推理的一般模式“三段論”,包括 大前提-已知的一般原理; 小前提-所研究的特殊情況; 結論-據(jù)一般原理,對特殊
5、情況做出的判斷用集合的觀點來理解:若集合中的所有元素都具有性質,是的一個子集,那么中所有元素也都具有性質P.M·a S從推理所得的結論來看,合情推理的結論不一定正確,有待進一步證明;演繹推理在前提和推理形式都正確的前提下,得到的結論一定正確.5、直接證明與間接證明綜合法:利用已知條件和某些數(shù)學定義、公理、定理等,經過一系列的推理論證,最后推導出所要證明的結論成立.框圖表示: 要點:順推證法;由因導果.分析法:從要證明的結論出發(fā),逐步尋找使它成立的充分條件,直至最后,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止. 框圖表示: 要點:逆推證法;執(zhí)果索因.
6、反證法:一般地,假設原命題不成立,經過正確的推理,最后得出矛盾,因此說明假設錯誤,從而證明了原命題成立.的證明方法.它是一種間接的證明方法. 反證法法證明一個命題的一般步驟:(1)(反設)假設命題的結論不成立; (2)(推理)根據(jù)假設進行推理,直到導出矛盾為止; (3)(歸謬)斷言假設不成立;(4)(結論)肯定原命題的結論成立.6、數(shù)學歸納法數(shù)學歸納法是證明關于正整數(shù)的命題的一種方法.用數(shù)學歸納法證明命題的步驟;(1)(歸納奠基)證明當取第一個值時命題成立;(2)(歸納遞推)假設時命題成立,推證當時命題也成立. 只要完成了這兩個步驟,就可以斷定命題對從開始的所有正整數(shù)都成立.用數(shù)學歸納法可以證
7、明許多與自然數(shù)有關的數(shù)學命題,其中包括恒等式、不等式、數(shù)列通項公式、幾何中的計算問題等.第三章 數(shù)系的擴充與復數(shù)的引入一:復數(shù)的概念(1) 復數(shù):形如的數(shù)叫做復數(shù),和分別叫它的實部和虛部.(2) 分類:復數(shù)中,當,就是實數(shù); ,叫做虛數(shù);當時,叫做純虛數(shù).(3) 復數(shù)相等:如果兩個復數(shù)實部相等且虛部相等就說這兩個復數(shù)相等.(4) 共軛復數(shù):當兩個復數(shù)實部相等,虛部互為相反數(shù)時,這兩個復數(shù)互為共軛復數(shù).(5) 復平面:建立直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸除去原點的部分叫做虛軸。(6) 兩個實數(shù)可以比較大小,但兩個復數(shù)如果不全是實數(shù)就不能比較大小。2相關公式指兩復數(shù)實部相同,虛部互為相反數(shù)(互為共軛復數(shù)).3復數(shù)運算復數(shù)加
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農業(yè)產業(yè)園區(qū)規(guī)劃與管理研究
- 2025年新科版八年級生物上冊階段測試試卷含答案
- 2025年牛津譯林版九年級歷史上冊月考試卷含答案
- 2025年粵教版八年級歷史上冊月考試卷
- 2025年浙教新版選修4歷史下冊階段測試試卷
- 2025年滬科版選修化學下冊月考試卷
- 2025年牛津上海版八年級歷史上冊階段測試試卷含答案
- 2025年青島版六三制新高三地理上冊階段測試試卷
- 2025年度農產品市場調研與分析服務合同11篇
- 2025年度農業(yè)合作社與農產品加工企業(yè)合作合同4篇
- 不同茶葉的沖泡方法
- 光伏發(fā)電并網申辦具體流程
- 建筑勞務專業(yè)分包合同范本(2025年)
- 企業(yè)融資報告特斯拉成功案例分享
- 五年(2020-2024)高考地理真題分類匯編(全國版)專題12區(qū)域發(fā)展解析版
- 《阻燃材料與技術》課件 第8講 阻燃木質材料
- 低空經濟的社會接受度與倫理問題分析
- GB/T 4732.1-2024壓力容器分析設計第1部分:通用要求
- 河北省保定市競秀區(qū)2023-2024學年七年級下學期期末生物學試題(解析版)
- 運動技能學習與控制課件
- 六編元代文學
評論
0/150
提交評論