




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、專題08 幾何壓軸題專訓八1(2020南通)【了解概念】有一組對角互余的凸四邊形稱為對余四邊形,連接這兩個角的頂點的線段稱為對余線【理解運用】(1)如圖,對余四邊形中,連接若,求的值;(2)如圖,凸四邊形中,當時,判斷四邊形是否為對余四邊形證明你的結論;【拓展提升】(3)在平面直角坐標系中,點,四邊形是對余四邊形,點在對余線上,且位于內(nèi)部,設,點的縱坐標為,請直接寫出關于的函數(shù)解析式【答案】(1)(2)四邊形是對余四邊形(3)【詳解】解:(1)過點作于,過點作于,在中,(2)如圖中,結論:四邊形是對余四邊形理由:過點作,使得,連接四邊形中,四邊形是對余四邊形(3)如圖中,過點作軸于,四邊形是對
2、余四邊形,四點共圓,設,四邊形是對余四邊形,可得,整理得,在中,即2(2020河北)如圖1和圖2,在中,點在邊上,點,分別在,上,且點從點出發(fā)沿折線勻速移動,到達點時停止;而點在邊上隨移動,且始終保持(1)當點在上時,求點與點的最短距離;(2)若點在上,且將的面積分成上下兩部分時,求的長;(3)設點移動的路程為,當及時,分別求點到直線的距離(用含的式子表示);(4)在點處設計并安裝一掃描器,按定角掃描區(qū)域(含邊界),掃描器隨點從到再到共用時36秒若,請直接寫出點被掃描到的總時長【答案】(1)3(2)(3)(4)點被掃描到的總時長(秒【詳解】解:(1)如圖1中,過點作于,當點在上時,時,點到的最
3、短距離為3(2)如圖1中,將的面積分成上下,(3)當時,如圖中,過點作交的延長線于,當時,如圖2中,過點作于同法可得綜上,;(4)由題意點的運動速度單位長度秒當時,設點移動的路程為,時,有最大值,最大值,當時,解得,點被掃描到的總時長(秒3(2020寧波)定義:三角形一個內(nèi)角的平分線和與另一個內(nèi)角相鄰的外角平分線相交所成的銳角稱為該三角形第三個內(nèi)角的遙望角(1)如圖1,是中的遙望角,若,請用含的代數(shù)式表示(2)如圖2,四邊形內(nèi)接于,四邊形的外角平分線交于點,連接并延長交的延長線于點求證:是中的遙望角(3)如圖3,在(2)的條件下,連接,若是的直徑求的度數(shù);若,求的面積【答案】(1)(2)見解析
4、(3);【詳解】解:(1)平分,平分,(2)如圖1,延長到點,四邊形內(nèi)接于,又,平分,是的平分線,是的外角平分線,是中的遙望角(3)如圖2,連接,是中的遙望角,又,是的直徑,如圖3,過點作于點,過點作于點,是的直徑,平分,在中,在中,在中,設,則有,4(2020廣州)如圖,為等邊的外接圓,半徑為2,點在劣弧上運動(不與點,重合),連接,(1)求證:是的平分線;(2)四邊形的面積是線段的長的函數(shù)嗎?如果是,求出函數(shù)解析式;如果不是,請說明理由;(3)若點,分別在線段,上運動(不含端點),經(jīng)過探究發(fā)現(xiàn),點運動到每一個確定的位置,的周長有最小值,隨著點的運動,的值會發(fā)生變化,求所有值中的最大值【答案
5、】(1)見解析(2)是(3)【詳解】證明:(1)是等邊三角形,是的平分線;(2)四邊形的面積是線段的長的函數(shù),理由如下:如圖1,將繞點逆時針旋轉,得到,四邊形是圓內(nèi)接四邊形,點,點,點三點共線,是等邊三角形,四邊形的面積,;(3)如圖2,作點關于直線的對稱點,作點關于直線的對稱點,點,點關于直線對稱,同理,的周長,當點,點,點,點四點共線時,的周長有最小值,則連接,交于,交于,連接,作于,的周長最小值為,點,點關于直線對稱,點,點關于直線對稱,當有最大值時,有最大值,即有最大值,為的弦,為直徑時,有最大值4,的最大值為5(2020寧波)【基礎鞏固】(1)如圖1,在中,為上一點,求證:【嘗試應用
6、】(2)如圖2,在中,為上一點,為延長線上一點,若,求的長【拓展提高】(3)如圖3,在菱形中,是上一點,是內(nèi)一點,求菱形的邊長【答案】(1)見解析(2)(3)【詳解】解:(1)證明:,(2)四邊形是平行四邊形,又,又,(3)如圖,分別延長,相交于點,四邊形是菱形,四邊形為平行四邊形,又,又,又,6(2020嘉興)在一次數(shù)學研究性學習中,小兵將兩個全等的直角三角形紙片和拼在一起,使點與點重合,點與點重合(如圖,其中,并進行如下研究活動活動一:將圖1中的紙片沿方向平移,連接,(如圖,當點與點重合時停止平移【思考】圖2中的四邊形是平行四邊形嗎?請說明理由【發(fā)現(xiàn)】當紙片平移到某一位置時,小兵發(fā)現(xiàn)四邊形
7、為矩形(如圖求的長活動二:在圖3中,取的中點,再將紙片繞點順時針方向旋轉度,連接,(如圖【探究】當平分時,探究與的數(shù)量關系,并說明理由【答案】【思考】四邊形是平行四邊形;【發(fā)現(xiàn)】【探究】【詳解】解:【思考】四邊形是平行四邊形證明:,四邊形是平行四邊形;【發(fā)現(xiàn)】如圖1,連接交于點,四邊形為矩形,設,則,在中,解得:,【探究】,證明:如圖2,延長交于點,由矩形的性質及旋轉的性質知:,平分,7(2020重慶)為等邊三角形,于點,為線段上一點,以為邊在直線右側構造等邊三角形,連接,為的中點(1)如圖1,與交于點,連接,求線段的長;(2)如圖2,將繞點逆時針旋轉,旋轉角為,為線段的中點,連接,當時,猜想
8、的大小是否為定值,并證明你的結論;(3)連接,在繞點逆時針旋轉過程中,當線段最大時,請直接寫出的面積【答案】(1)(2)是定值(3)【詳解】解:(1)如圖1中,連接,是等邊三角形,是等邊三角形,是等邊三角形,(2)結論:是定值理由:連接,同法可證,(3)如圖中,取的中點,連接,當點在的延長線上時,的值最大,如圖中,過點作于,設交于,連接,在中,8(2020山西)綜合與實踐問題情境:如圖,點為正方形內(nèi)一點,將繞點按順時針方向旋轉,得到(點的對應點為點延長交于點,連接猜想證明:(1)試判斷四邊形的形狀,并說明理由;(2)如圖,若,請猜想線段與的數(shù)量關系并加以證明;解決問題:(3)如圖,若,請直接寫
9、出的長【答案】(1)四邊形是正方形(2)(3)【詳解】解:(1)四邊形是正方形,理由如下:將繞點按順時針方向旋轉,又,四邊形是矩形,又,四邊形是正方形;(2);理由如下:如圖,過點作于,四邊形是正方形,又,將繞點按順時針方向旋轉,四邊形是正方形,;(3)如圖,過點作于,四邊形是正方形,由(2)可知:,9(2020衢州)【性質探究】如圖,在矩形中,對角線,相交于點,平分,交于點作于點,分別交,于點,(1)判斷的形狀并說明理由(2)求證:【遷移應用】(3)記的面積為,的面積為,當時,求的值【拓展延伸】(4)若交射線于點,【性質探究】中的其余條件不變,連接,當?shù)拿娣e為矩形面積的時,請直接寫出的值【答
10、案】(1)是等腰三角形(2)見解析(3)(4)的值為或【詳解】(1)解:如圖1中,是等腰三角形理由:平分,是等腰三角形(2)證明:如圖2中,過點作交于,則,四邊形是矩形,(3)解:如圖3中,過點作于,則,又,設,則,(4)解:設,如圖4中,連接,當點在線段上時,點在上,即,由題意:,即,如圖5中,當點在的延長線上時,點在線段上,連接,即,由題意:,即,綜上所述,的值為或10(2020武漢)問題背景 如圖(1),已知,求證:;嘗試應用 如圖(2),在和中,與相交于點,點在邊上,求的值;拓展創(chuàng)新 如圖(3),是內(nèi)一點,直接寫出的長【答案】問題背景:見解析;嘗試應用:;拓展創(chuàng)新:【詳解】問題背景證明
11、:,;嘗試應用解:如圖1,連接,由(1)知,在中,拓展創(chuàng)新解:如圖2,過點作的垂線,過點作的垂線,兩垂線交于點,連接,又,又,即,11(2020青島)已知:如圖,在四邊形和中,點在上,延長交于點點從點出發(fā),沿方向勻速運動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為過點作于點,交于點設運動時間為解答下列問題:(1)當為何值時,點在線段的垂直平分線上?(2)連接,作于點,當四邊形為矩形時,求的值;(3)連接,設四邊形的面積為,求與的函數(shù)關系式;(4)點在運動過程中,是否存在某一時刻,使點在的平分線上?若存在,求出的值;若不存在,請說明理由【答案】(1)(2)當時,四邊形為矩形(3)(4)存在
12、,當時,使點在的平分線上【詳解】解:(1),點在線段的垂直平分線上,;(2)如圖1,過點作于點,同理可求,四邊形是矩形,;當時,四邊形為矩形;(3)如圖2,過點作于點,由(2)可知,四邊形的面積為,;(4)存在理由如下:如圖3,連接,延長交于,又,平分,當時,使點在的平分線上12(2020天津)將一個直角三角形紙片放置在平面直角坐標系中,點,點,點在第一象限,點在邊上(點不與點,重合)()如圖,當時,求點的坐標;()折疊該紙片,使折痕所在的直線經(jīng)過點,并與軸的正半軸相交于點,且,點的對應點為,設如圖,若折疊后與重疊部分為四邊形,分別與邊相交于點,試用含有的式子表示的長,并直接寫出的取值范圍;若
13、折疊后與重疊部分的面積為,當時,求的取值范圍(直接寫出結果即可)【答案】(),();【詳解】解:()如圖中,過點作于,()如圖中,由折疊可知,四邊形是菱形,在中,當點落在上時,重疊部分是,此時,當時,重疊部分是四邊形,當時,有最大值,最大值,當時,當時,綜上所述,13(2020常州)如圖1,點在線段上,(1)點到直線的距離是;(2)固定,將繞點按順時針方向旋轉,使得與重合,并停止旋轉請你在圖1中用直尺和圓規(guī)畫出線段經(jīng)旋轉運動所形成的平面圖形(用陰影表示,保留畫圖痕跡,不要求寫畫法)該圖形的面積為;如圖2,在旋轉過程中,線段與交于點,當時,求的長【答案】(1)1(2);【詳解】解:(1)如圖1中
14、,作于,在和中,法二:,故答案為1;(2)線段經(jīng)旋轉運動所形成的平面圖形如圖所示,此時點落在上的點處故答案為(3)如圖2中,過點作于設在中,在中,在中,則有,解得或(不合題意舍棄),解法二:作于,設,則,在中,利用勾股定理,構建方程,求出,可得結論14(2020長沙)如圖,半徑為4的中,弦的長度為,點是劣弧上的一個動點,點是弦的中點,點是弦的中點,連接、(1)求的度數(shù);(2)當點沿著劣弧從點開始,逆時針運動到點時,求的外心所經(jīng)過的路徑的長度;(3)分別記,的面積為,當時,求弦的長度【答案】(1)(2)(3)滿足條件的的值為【詳解】解:(1)如圖1中,過點作于,(2)如圖2中,連接,取的中點,連接,四點共圓,是直徑,的中點是的外接圓的圓心,點在以為圓心,2為半徑的圓上運動,點的運動路徑的長(3)當點靠近點時,如圖3中,當時,連接交于,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 10713:2025 EN Jewellery and precious metals - Gold alloy coatings
- T-ZHAQ 8-2024 小葉牛大力種植技術規(guī)程
- 二零二五年度應屆大學生人力資源實習合同
- 二零二五年度股票投資風險控制與合規(guī)監(jiān)督協(xié)議
- 二零二五年度個人債權轉讓協(xié)議書(關于專利權轉讓)
- 高管二零二五年度勞動合同及離職交接程序
- 二零二五年度路橋工程土地征用與拆遷合同
- 美容院合伙人投資回報與風險控制協(xié)議書(2025年度)
- 2025年度金融借款合同違約起訴流程及費用結算合同
- 2025年度餐飲企業(yè)跨界合作合伙經(jīng)營合同
- (正式版)CB∕T 4548-2024 船舶行業(yè)企業(yè)相關方安全管理要求
- 部編版八年級物理(上冊)期末試卷(帶答案)
- 《衡水內(nèi)畫》課程標準
- DB32T 4400-2022《飲用水次氯酸鈉消毒技術規(guī)程》
- 化學品(氬氣+二氧化碳混合氣)安全技術使用說明書
- 煤層氣開發(fā)-第2章-煤層氣地質
- 美羅華(利妥昔單抗)課件
- 稅務簡易注銷課件
- 人教版五年級數(shù)學下冊第六單元分層作業(yè)設計
- 肺葉切除術和全肺切除術的麻醉課件
- 智能制造在食品加工業(yè)的應用
評論
0/150
提交評論