版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、2019 年高考理數(shù)概率統(tǒng)計(jì)1. (19 全國一 理 21( 12 分) )為治療某種疾病, 研制了甲、 乙兩種新藥, 希望知道哪種新藥更有效,為此進(jìn)行動(dòng)物試 驗(yàn) 試驗(yàn)方案如下:每一輪選取兩只白鼠對(duì)藥效進(jìn)行對(duì)比試驗(yàn) 對(duì)于兩只白鼠, 隨機(jī)選 一只施以甲藥,另一只施以乙藥 一輪的治療結(jié)果得出后, 再安排下一輪試驗(yàn) 當(dāng)其中 一種藥治愈的白鼠比另一種藥治愈的白鼠多 4 只時(shí),就停止試驗(yàn), 并認(rèn)為治愈只數(shù)多的 藥更有效為了方便描述問題,約定: 對(duì)于每輪試驗(yàn), 若施以甲藥的白鼠治愈且施以乙 藥的白鼠未治愈則甲藥得 1 分,乙藥得 1分;若施以乙藥的白鼠治愈且施以甲藥的白 鼠未治愈則乙藥得 1 分,甲藥得
2、1分;若都治愈或都未治愈則兩種藥均得0 分甲、乙兩種藥的治愈率分別記為a和伏一輪試驗(yàn)中甲藥的得分記為X.(1) 求 X 的分布列;(2) 若甲藥、乙藥在試驗(yàn)開始時(shí)都賦予4分, pi(i 0,1,L ,8)表示“甲藥的累計(jì)得分為 i 時(shí),最終認(rèn)為甲 藥比乙藥更有效”的概率,則 p00, p81,pi api 1 bpi cpi 1 (i 1,2,L ,7) , 其 中 a P(X 1) , b P(X 0) , c P(X 1) .假設(shè)0.5,0.8.(i) 證明:Pii Pi (i 0,1,2,L ,7)為等比數(shù)列;(ii) 求P4,并根據(jù)P4的值解釋這種試驗(yàn)方案的合理性.102. (19 全
3、國二理 18.( 12 分)11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.(1)求 P( X=2);(2)求事件X=4且甲獲勝”的概率.3. ( 19全國三理17 .( 12分)為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成A, B兩組,每組100只,其中A組小鼠給服甲離子溶液, B組小鼠給服乙離子溶液, 每只小鼠給服的溶液
4、體積相同、 摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測算出 殘留在小鼠體內(nèi)離子的百分比根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:記C為事件:“乙離子殘留在體內(nèi)的百分比不低于5.5”,根據(jù)直方圖得到 P ( C)的估計(jì)值為0.70.(1) 求乙離子殘留百分比直方圖中a, b的值;(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值 為代表).4. (19北京理(17)(本小題13分)改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一為了解某校學(xué)生上個(gè)月A, B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了 100人,發(fā)現(xiàn)樣本中 A, B兩種支付
5、方式都不使用的有5人,樣本中僅使用 A和僅使用B的學(xué)生的支付金額分布情況如下:、支付金額(元)支付方式(0, 1000(1000, 2000大于2000僅使用A18人9人3人僅使用B10人14人1人(I)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月 A, B兩種支付方式都使用的概率;(H)從樣本僅使用 A和僅使用B的學(xué)生中各隨機(jī)抽取 1人,以X表示這2人中上個(gè) 月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;(川)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額
6、大于2000元的人數(shù)有變化?說明理由.5. ( 19天津理16.(本小題滿分 13分)2設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7 : 30之前到校的概率均為 -假定甲、乙兩位同3學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.(I)用X表示甲同學(xué)上學(xué)期間的三天中7: 30之前到校的天數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;(n)設(shè)M為事件“上學(xué)期間的三天中,甲同學(xué)在7: 30之前到校的天數(shù)比乙同學(xué)在7: 30之前到校的天數(shù)恰好多 2”,求事件 M發(fā)生的概率.6. ( 19江蘇 23.(本小題滿分 10分) )在 平 面 直 角 坐 標(biāo) 系 xOy 中 , 設(shè) 點(diǎn) 集 An (0,0),(1,0),(2
7、,0), ,( n,0) Bn(0,1),(n,1),Cn (0,2),(1 ,2),(2,2), L ,(n,2), n N .令M n An U Bn U Cn 從集合M沖任取兩個(gè)不同的點(diǎn),用隨機(jī)變量 X表示它們之間的距 離.(1 )當(dāng)門=1時(shí),求X的概率分布;(2)對(duì)給定的正整數(shù) n (n3,求概率P (xq)(用n表示).參考答案:1 解:X的所有可能取值為1,0,1 .P(X 1) (1),P(X 0)(1)(1),P(X 1)(1),所以X的分布列為(2)(I-仗)(1-/0%i-0)(門由(1)得a 0.4,b 0.5, c 0.1.因此 Pi =0.4 p 1+0.5 Pi+0
8、.1Pi故 0.1 口 1Pi0.4 Pi 口 1 ,即pi 1Pi 4 Pi|pi 1.又因?yàn)閜1P0P10,所以p1 P'i (i比數(shù)列.(ii)由(i)可得P8P8P7 P7P6 L P1P0P0由于P8=1,故P138,丿所以41P4P4P3P3 P2P2P10,1,2,L ,7)為公比為4,首項(xiàng)為P1的等P6L48 1P8P7P7P1P03 P1P1 P044113p1257.由計(jì)算結(jié)果可以看出,在甲藥治愈率為P4表示最終認(rèn)為甲藥更有效的概率,0.5,乙藥治愈率為0.8時(shí),認(rèn)為甲藥更有效的概率為P412570.0039,此時(shí)得出錯(cuò)誤結(jié)論的概率非常小,說明這種試驗(yàn)方案合理2解:
9、(1) X=2就是10 : 10平后,兩人又打了 2個(gè)球該局比賽結(jié)束,則這2個(gè)球均由甲得分,或者均由乙得分.因此 P (X=2) =0.5 X 0.4+( 1 -0.5) X (1 -0.4) =0.5 (2) X=4且甲獲勝,就是10 : 10平后,兩人又打了 4個(gè)球該局比賽結(jié)束,且這4個(gè)球的得分情況為:前兩球是甲、乙各得 1分,后兩球均為甲得分.因此所求概率為0.5 ( 1 -0.4) + ( 1 -0.5) X 0.4 X 0.5 X 0.4=0.13 .解:(1 )由已知得 0.70=a+0.20+0.15,故 a=0.35.b=1 -0.05 -0.15 -.70=0.10 .(2)
10、甲離子殘留百分比的平均值的估計(jì)值為2 X 0.15+3 X 0.20+4 X 0.30+5 X 0.20+6 X 0.10+7 .X 0.05=4.05乙離子殘留百分比的平均值的估計(jì)值為3 X 0.05+4 X 0.10+5 X 0.15+6 X 0.35+7 X 0.20+8 .X 0.15=6.004.解:(I)由題意知,樣本中僅使用A的學(xué)生有18+9+3=30人,僅使用B的學(xué)生有10+14+仁25人,A, B兩種支付方式都不使用的學(xué)生有 5人.故樣本中A, B兩種支付方式都使用的學(xué)生有100-30-25-5=40 人.所以從全校學(xué)生中隨機(jī)抽取 1人,該學(xué)生上個(gè)月A, B兩種支付方式都使用
11、的概率估計(jì)為401000.4.(n) x的所有可能值為0, 1, 2.記事件C為 從樣本僅使用A的學(xué)生中隨機(jī)抽取1人,該學(xué)生上個(gè)月的支付金額大于1000元”,事件D為從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,該學(xué)生上個(gè)月的支付金額大于1000”兀 9 3141由題設(shè)知,事件 C, D相互獨(dú)立,且 P(C)0.4, P(D)0.6 .3025所以 P(X 2) P(CD) P(C)P(D) 0.24 ,P(X 1) P(CD UCD)P(C)P(D) P(C)P(D)=0.4 ( 1-0.6 )+ (1-0.4 ) X 0.6=0.52,P(X 0) P(CD) P(C)P(D) 0.24 .所以X的
12、分布列為X0P0.24120.520.24故X的數(shù)學(xué)期望 E (X) =0X 0.24+1 X 0.52+2 X 0.24=1.(川)記事件E為 從樣本僅使用A的學(xué)生中隨機(jī)抽查3人,他們本月的支付金額都大于2000元”.假設(shè)樣本僅使用A的學(xué)生中,本月支付金額大于 2000元的人數(shù)沒有變化,則由上個(gè)月的樣本數(shù)據(jù)得P(E)14060答案示例1:可以認(rèn)為有變化.理由如下:P (E)比較小,概率比較小的事件一般不容易發(fā)生一旦發(fā)生,就有理由認(rèn)為本月的支付金額大于2000元的人數(shù)發(fā)生了變化.所以可以認(rèn)為有變化.答案示例2:無法確定有沒有變化.理由如下:事件E是隨機(jī)事件,P (E)比較小,一般不容易發(fā)生,但
13、還是有可能發(fā)生的,所以無法 確定有沒有變化.5 .本小題主要考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,互斥事件和相互獨(dú)立事件的概率計(jì)算公式等基礎(chǔ)知識(shí)考查運(yùn)用概率知識(shí)解決簡單實(shí)際問題的能力滿分13分.(I)解:因?yàn)榧淄瑢W(xué)上學(xué)期間的三天中到校情況相互獨(dú)立,且每天7: 30之前到校的2 22 k 1 3 k概率均為一,故 X B 3,,從而 P(X k) C3k,k 0,1,2,3 .3 333所以,隨機(jī)變量X的分布列為X0123P12482799272隨機(jī)變量X的數(shù)學(xué)期望E(X) 3 -2 .32(H)解:設(shè)乙同學(xué)上學(xué)期間的三天中7: 30之前到校的天數(shù)為 Y,則YB 3,23且 M X 3,Y1UX
14、2,Y0.由題意知事件X 3,Y1與X 2,Y0互斥,且事件 X 3與 Y 1,事件 X 2與Y 0均相互獨(dú)立,從而由(I)知2,Y0)P(M) P(X 3,Y1 UX 2,Y0) P(X 3,Y1) P(XP(X 3)P(Y1) P(X 2)P(Y0)_8 _2里丄279927202436解:(1)當(dāng)n 1時(shí),X的所有可能取值是1,2 ,2,5 .77r 4X的概率分布為P(X 1)2 ,P(X 2)2C6 15C6415,2 2P(X 2) & 亦,P(X215(2)設(shè)A(a ,b)和B(c,d)是從M.中取出的兩個(gè)點(diǎn).因?yàn)镻(X n) 1 P(X n),所以僅需考慮X n的情況. 若b d,貝U AB n,不存在X n的取法; 若b 0 ,d 1 ,則ab . (a c)2 1 n2 1 ,所以X n當(dāng)且僅當(dāng) AB 一 1,此時(shí)a 0 , c n或a n ,c 0,有2種取法; 若 b 0,d 2 ,則 ab . (a c)2 4 n2 4 ,因?yàn)?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)技術(shù)智能監(jiān)控系統(tǒng)布設(shè)協(xié)議2024版B版
- 個(gè)性化2024版動(dòng)力煤托盤協(xié)議示例版
- 專業(yè)教師2024年度聘用協(xié)議范例版B版
- 閱讀理解技巧講座
- 二零二四年云服務(wù)租賃協(xié)議
- 2025年度科技園區(qū)場地?zé)o償使用及知識(shí)產(chǎn)權(quán)共享協(xié)議4篇
- 2025年度叉車維修及配件供應(yīng)一體化服務(wù)合同4篇
- 2025年度場崗位員工保密協(xié)議執(zhí)行細(xì)則4篇
- 專屬委托銷售代表協(xié)議樣式(2024)版A版
- 2025年度影視基地場地租賃合同24篇
- 給男友的道歉信10000字(十二篇)
- 2020年高級(jí)統(tǒng)計(jì)實(shí)務(wù)與案例分析真題及答案
- 全面質(zhì)量管理(TQM)基本知識(shí)
- 練字本方格模板
- 產(chǎn)品供貨質(zhì)量保障措施
- 電力電纜高頻局放試驗(yàn)報(bào)告
- 《老山界》第1第2課時(shí)示范公開課教學(xué)PPT課件【統(tǒng)編人教版七年級(jí)語文下冊】
- JJG 517-2016出租汽車計(jì)價(jià)器
- JJF 1914-2021金相顯微鏡校準(zhǔn)規(guī)范
- GB/T 32045-2015節(jié)能量測量和驗(yàn)證實(shí)施指南
- GB/T 10001.6-2021公共信息圖形符號(hào)第6部分:醫(yī)療保健符號(hào)
評(píng)論
0/150
提交評(píng)論