下載本文檔
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、真誠(chéng)為您提供優(yōu)質(zhì)參考資料,若有不當(dāng)之處,請(qǐng)指正。第十四章 圖形的相似考點(diǎn)一、比例線段 (3分) 1、比例線段的相關(guān)概念如果選用同一長(zhǎng)度單位量得兩條線段a,b的長(zhǎng)度分別為m,n,那么就說(shuō)這兩條線段的比是,或?qū)懗蒩:b=m:n在兩條線段的比a:b中,a叫做比的前項(xiàng),b叫做比的后項(xiàng)。在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡(jiǎn)稱(chēng)比例線段若四條a,b,c,d滿(mǎn)足或a:b=c:d,那么a,b,c,d叫做組成比例的項(xiàng),線段a,d叫做比例外項(xiàng),線段b,c叫做比例內(nèi)項(xiàng),線段的d叫做a,b,c的第四比例項(xiàng)。如果作為比例內(nèi)項(xiàng)的是兩條相同的線段,即或a:b=b:c,那么線
2、段b叫做線段a,c的比例中項(xiàng)。2、比例的性質(zhì)(1)基本性質(zhì)a:b=c:dad=bca:b=b:c(2)更比性質(zhì)(交換比例的內(nèi)項(xiàng)或外項(xiàng)) (交換內(nèi)項(xiàng)) (交換外項(xiàng)) (同時(shí)交換內(nèi)項(xiàng)和外項(xiàng))(3)反比性質(zhì)(交換比的前項(xiàng)、后項(xiàng)):(4)合比性質(zhì):(5)等比性質(zhì):3、黃金分割把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),其中AC=AB0.618AB考點(diǎn)二、平行線分線段成比例定理 (35分)三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。推論:(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線
3、段成比例。逆定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例??键c(diǎn)三、相似三角形 (38分) 1、相似三角形的概念對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形叫做相似三角形。相似用符號(hào)“”來(lái)表示,讀作“相似于”。相似三角形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))。2、相似三角形的基本定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似。用數(shù)學(xué)語(yǔ)言表述如下:DEBC,ADEABC相似三角形的等價(jià)關(guān)系:(1)反身性:對(duì)于任一ABC,都有
4、ABCABC;(2)對(duì)稱(chēng)性:若ABCABC,則ABCABC(3)傳遞性:若ABCABC,并且ABCABC,則ABCABC。3、三角形相似的判定(1)三角形相似的判定方法定義法:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似判定定理1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩角對(duì)應(yīng)相等,兩三角形相似。判定定理2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對(duì)應(yīng)相等,并且?jiàn)A角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。判定定理3:如果一
5、個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)述為三邊對(duì)應(yīng)成比例,兩三角形相似(2)直角三角形相似的判定方法以上各種判定方法均適用定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似垂直法:直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形相似。4、相似三角形的性質(zhì)(1)相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例(2)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比(3)相似三角形周長(zhǎng)的比等于相似比(4)相似三角形面積的比等于相似比的平方。5、相似多邊形(1)如果兩個(gè)邊數(shù)相同的多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,那么這兩個(gè)多邊形叫做相似多邊形。相似多邊形對(duì)應(yīng)邊的比叫做相似比(或相似系數(shù))(2)相似多邊形的性質(zhì)相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例相似多邊形周長(zhǎng)的比、對(duì)應(yīng)對(duì)角線的比都等于相似比相似多邊形中的對(duì)應(yīng)三角形相似,相似比等于相似多邊形的相似比相似多邊形面積的比等于相似比的平方6、位似圖形如果兩個(gè)圖形不僅是相似圖形,而且每組對(duì)應(yīng)點(diǎn)所在直線都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,此時(shí)的相似比叫做位
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年照明電子產(chǎn)品項(xiàng)目建議書(shū)
- 2025年半導(dǎo)體分立器件項(xiàng)目建議書(shū)
- 西藏自治區(qū)左貢縣中學(xué)2025屆中考二模生物試題含解析
- 2024年茶葉產(chǎn)區(qū)標(biāo)準(zhǔn)承包協(xié)議范例版B版
- 浙江省衢州市常山縣2025屆中考生物最后一模試卷含解析
- 新能源汽車(chē)充電樁招投標(biāo)流程
- 仲裁協(xié)議藝術(shù)品交易糾紛
- 制造業(yè)全資子公司監(jiān)督方案
- KTV清潔工聘用合同
- 旅行社解約協(xié)議書(shū)
- 理論力學(xué)(浙江大學(xué))知到智慧樹(shù)章節(jié)答案
- 征信知識(shí)測(cè)試題及答案
- JJF 1629-2017 烙鐵溫度計(jì)校準(zhǔn)規(guī)范(高清版)
- 理想系列一體化速印機(jī)故障代碼
- 檢驗(yàn)科各專(zhuān)業(yè)組上崗輪崗培訓(xùn)考核制度全6頁(yè)
- 部編版二年級(jí)下冊(cè)語(yǔ)文拼音練習(xí)
- 工程停止點(diǎn)檢查管理(共17頁(yè))
- 建筑施工危大工程監(jiān)理實(shí)施細(xì)則
- 六年級(jí)上冊(cè)數(shù)學(xué)單元測(cè)試第七單元檢測(cè)卷∣蘇教版
- 爬架安裝檢查驗(yàn)收記錄表1529
- 2021年全國(guó)煙草工作會(huì)議上的報(bào)告
評(píng)論
0/150
提交評(píng)論