第28章-銳角三角函數(shù)-全章教案_第1頁
第28章-銳角三角函數(shù)-全章教案_第2頁
第28章-銳角三角函數(shù)-全章教案_第3頁
第28章-銳角三角函數(shù)-全章教案_第4頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、教學(xué)時(shí)間課題28.1 銳角三角函數(shù)課型新授課知識(shí)初步了解正弦 、余弦 、正切概念;能較正確地用siaA、 cosA、 tanA 表示直角三角形中教和兩邊的比;熟記功30° 、 45° 、 60°角的三角函數(shù),并能根據(jù)這些值說出對(duì)應(yīng)的銳角能力度數(shù)。學(xué)過程逐步培養(yǎng)學(xué)生觀察、比較 、分析,概括的思維能力。和目方法情感提高學(xué)生對(duì)幾何圖形美的認(rèn)識(shí)。標(biāo)態(tài)度價(jià)值觀教學(xué)重點(diǎn)教學(xué)難點(diǎn)正弦,余弦,正切概念用含有幾個(gè)字母的符號(hào)組siaA、 cosA 、 tanA 表示正弦,余弦,正切教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課堂教學(xué)程序設(shè)計(jì)設(shè)計(jì)意圖一探究活動(dòng)1課本引入問題, 再結(jié)合特殊角30

2、° 、45°、60°的直角三角形探究直角三角形的邊角關(guān)系。2歸納三角函數(shù)定義。A的對(duì)邊,cosA=A的鄰邊A的對(duì)邊siaA=斜邊,tanA=斜邊A的鄰邊3 例 1.求如圖所示的Rt ABC 中的 siaA,cosA,tanA 的值。BBCAAC4.學(xué)生練習(xí) P21 練習(xí) 1, 2, 3二探究活動(dòng)二1.讓學(xué)生畫 30° 45° 60°的直角三角形 ,分別求 sia 30° cos45°tan60°歸納結(jié)果30°45°60°siaAcosAtanA2. 求下列各式的值( 1) s

3、ia 30° +cos30°(2)2 sia 45° - 1 cos30°cos30 02(3) sia45 0 +ta60° -tan30°三拓展提高1.P82 例 4.(略)32.如圖,在 ABC 中 , A=30 ° ,tanB=,AC=23 ,求 AB2A四小結(jié)作業(yè)必做設(shè)計(jì)選做CB教科書 P82: 1-5教科書 P82-83: 6-10教學(xué)反思教學(xué)時(shí)間課題解直角三角形應(yīng)用(一)課型新授課教學(xué)知識(shí)使學(xué)生理解直角五個(gè)元素的關(guān)系,會(huì)運(yùn)用勾股定理, 直角三角形的兩個(gè)銳角互余及銳角和三角函數(shù)解直角三角形三角形中能力過程通過綜合

4、運(yùn)用勾股定理, 直角三角形的兩個(gè)銳角互余及銳角三角函數(shù)解直角三角形,逐和步培養(yǎng)學(xué)生分析問題、解決問題的能力目方法情感滲透數(shù)形結(jié)合的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣標(biāo)態(tài)度價(jià)值觀教學(xué)重點(diǎn)教學(xué)難點(diǎn)直角三角形的解法三角函數(shù)在解直角三角形中的靈活運(yùn)用教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課堂教學(xué)程序設(shè)計(jì)設(shè)計(jì)意圖(一 )知識(shí)回顧1在三角形中共有幾個(gè)元素?2直角三角形 ABC 中, C=90°,a、b、c、 A 、 B 這五個(gè)元素間有哪些等量關(guān)系呢?aba(1)邊角之間關(guān)系sinA=cosA=tanAccb(2)三邊之間關(guān)系a2+b2=c2 (勾股定理 )(3)銳角之間關(guān)系A(chǔ)+ B=90°

5、以上三點(diǎn)正是解直角三角形的依據(jù),通過復(fù)習(xí),使學(xué)生便于應(yīng)用(二) 探究活動(dòng)1我們已掌握Rt ABC 的邊角關(guān)系、三邊關(guān)系、角角關(guān)系,利用這些關(guān)系,在知道其中的兩個(gè)元素 (至少有一個(gè)是邊 ) 后,就可求出其余的元素 這樣的導(dǎo)語既可以使學(xué)生大概了解解直角三角形的概念,同時(shí)又陷入思考,為什么兩個(gè)已知元素中必有一條邊呢?激發(fā)了學(xué)生的學(xué)習(xí)熱情2教師在學(xué)生思考后,繼續(xù)引導(dǎo)“為什么兩個(gè)已知元素中至少有一條邊?”讓全體學(xué)生的思維目標(biāo)一致,在作出準(zhǔn)確回答后,教師請(qǐng)學(xué)生概括什么是解直角三角形?(由直角三角形中除直角外的兩個(gè)已知元素,求出所有未知元素的過程,叫做解直角三角形 )3例題評(píng)析例1 在 ABC 中, C 為

6、直角, A 、 B、 C 所對(duì)的邊分別為a、 b、 c,且 b=2a=6 ,解這個(gè)三角形例 2 在 ABC 中, C 為直角, A 、 B、C0B =35 ,解這個(gè)三角形(精確到0.1)所對(duì)的邊分別為a、b、c,且 b=20解直角三角形的方法很多,靈活多樣,學(xué)生完全可以自己解決,但例題具有示范作用因此,此題在處理時(shí),首先,應(yīng)讓學(xué)生獨(dú)立完成,培養(yǎng)其分析問題、解決問題能力,同時(shí)滲透數(shù)形結(jié)合的思想其次,教師組織學(xué)生比較各種方法中哪些較好,選一種板演完成之后引導(dǎo)學(xué)生小結(jié)“已知一邊一角,如何解直角三角形?”答:先求另外一角,然后選取恰當(dāng)?shù)暮瘮?shù)關(guān)系式求另兩邊計(jì)算時(shí),利用所求的量如不比原始數(shù)據(jù)簡便的話,最好

7、用題中原始數(shù)據(jù)計(jì)算,這樣誤差小些,也比較可靠,防止第一步錯(cuò)導(dǎo)致一錯(cuò)到底例 3 在 RtABC 中, a=104.0,b=20.49 ,解這個(gè)三角形(三 ) 鞏固練習(xí)在 ABC 中, C 為直角, AC=6 ,BAC 的平分線 AD=43 ,解此直角三角形。解直角三角形是解實(shí)際應(yīng)用題的基礎(chǔ),因此必須使學(xué)生熟練掌握為此,教材配備了練習(xí)針對(duì)各種條件,使學(xué)生熟練解直角三角形,并培養(yǎng)學(xué)生運(yùn)算能力(四 )總結(jié)與擴(kuò)展請(qǐng)學(xué)生小結(jié): 1 在直角三角形中,除直角外還有五個(gè)元素,知道兩個(gè)元素個(gè)是邊 ),就可以求出另三個(gè)元素2 解決問題要結(jié)合圖形。(至少有一作業(yè)必做教科書 P92: 1、 2設(shè)計(jì)選做練習(xí)冊(cè)教學(xué)反思教學(xué)

8、時(shí)間課題解直三角形應(yīng)用(二)課型新授課教學(xué)知識(shí)使學(xué)生了解仰角、俯角的概念,使學(xué)生根據(jù)直角三角形的知識(shí)解決實(shí)際問題和能力過程逐步培養(yǎng)分析問題、解決問題的能力和目方法情感標(biāo)態(tài)度價(jià)值觀教學(xué)重點(diǎn)要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形中元素之間的關(guān)系,從而解決問題教學(xué)難點(diǎn)要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形中元素之間的關(guān)系,從而解決問題教學(xué)準(zhǔn)備教師多媒體課件學(xué)生 “五個(gè)一”課堂教學(xué)程序設(shè) 計(jì)設(shè)計(jì)意圖(一)回憶知識(shí)1解直角三角形指什么?2解直角三角形主要依據(jù)什么?(1)勾股定理: a2+b2=c 2(2)銳角之間的關(guān)系: A+ B=90°(3)邊角之間的關(guān)系

9、:A的對(duì)邊sin AA的對(duì)邊cos AA的鄰邊tanA= A的鄰邊斜邊斜邊(二)新授概念1仰角、俯角當(dāng)我們進(jìn)行測(cè)量時(shí),在視線與水平線所成的角中,視線在水平線上方的角叫做仰角,在水平線下方的角叫做俯角教學(xué)時(shí),可以讓學(xué)生仰視燈或俯視桌面以體會(huì)仰角與俯角的意義2例 1如圖 (6-16) ,某飛機(jī)于空中 A 處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200 米,從飛機(jī)上看地平面控制點(diǎn)B 的俯角 =16°31,求飛機(jī) A 到控制點(diǎn) B 距離 (精確到 1 米 )AC解:在 Rt ABC 中 sinB= ABAC1200AB= sin B = 0.2843 =4221(米 )答:飛機(jī) A 到控制點(diǎn) B

10、 的距離約為4221 米例 2.2003年 10 月 15 日“神州” 5 號(hào)載人航天飛船發(fā)射成功。當(dāng)飛船完成變軌后,就在離地形表面 350km 的圓形軌道上運(yùn)行。如圖,當(dāng)飛船運(yùn)行到地球表面上P 點(diǎn)的正上方時(shí),從飛船上能直接看到地球上最遠(yuǎn)的點(diǎn)在什么位置?這樣的最遠(yuǎn)點(diǎn)與P 點(diǎn)的距離是多少?(地球半徑約為6400km ,結(jié)果精確到0.1km )分析:從飛船上能看到的地球上最遠(yuǎn)的點(diǎn),應(yīng)是視線與地球相切時(shí)的切點(diǎn)。將問題放到直角三角形 FOQ 中解決。FPQO解決此問題的關(guān)鍵是在于把它轉(zhuǎn)化為數(shù)學(xué)問題,利用解直角三角形知識(shí)來解決,在此之前,學(xué)生曾經(jīng)接觸到通過把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題后,用數(shù)學(xué)方法來解決問題

11、的方法,但不太熟練因此,解決此題的關(guān)鍵是轉(zhuǎn)化實(shí)際問題為數(shù)學(xué)問題,轉(zhuǎn)化過程中著重請(qǐng)學(xué)生畫幾何圖形,并說出題目中每句話對(duì)應(yīng)圖中哪個(gè)角或邊(包括已知什么和求什么 ),會(huì)利用平行線的內(nèi)錯(cuò)角相等的性質(zhì)由已知的俯角 得出 Rt ABC中的 ABC ,進(jìn)而利用解直角三角形的知識(shí)就可以解此題了A的對(duì)邊例 1 小結(jié):本章引言中的例子和例1 正好屬于應(yīng)用同一關(guān)系式sinA=斜邊來解決的兩個(gè)實(shí)際問題即已知和斜邊,求 的對(duì)邊;以及已知 和對(duì)邊,求斜邊(三)鞏固練習(xí)1熱氣球的探測(cè)器顯示, 從熱氣球看一棟高樓頂部的仰角為,看這棟樓底部的俯角為 60 0 ,熱氣球與高樓的水平距離為120m,這棟高樓有多高(結(jié)果精確到0.1

12、m )2如圖 6-17,某海島上的觀察所A 發(fā)現(xiàn)海上某船只 B 并測(cè)得其俯角 =80 °14已知觀察所 A 的標(biāo)高 (當(dāng)水位為 0m時(shí)的高度 )為 43.74m,當(dāng)時(shí)水位為 +2.63m ,求觀察所 A 到船只 B 的水平距離 BC( 精確到 1m) 教師在學(xué)生充分地思考后,應(yīng)引導(dǎo)學(xué)生分析:( 1)誰能將實(shí)物圖形抽象為幾何圖形?請(qǐng)一名同學(xué)上黑板畫出來( 2)請(qǐng)學(xué)生結(jié)合圖形獨(dú)立完成。3 如圖6-19,已知A 、 B 兩點(diǎn)間的距離是160 米,從A 點(diǎn)看B 點(diǎn)的仰角是11°,AC長為1.5 米,求BD的高及水平距離CD 此題在例 1 的基礎(chǔ)上,又加深了一步,須由 A 作一條平行

13、于 CD 的直線交 BD 于 E,構(gòu)造出 Rt ABE ,然后進(jìn)一步求出 AE 、 BE ,進(jìn)而求出 BD 與 CD 設(shè)置此題,既使成績較好的學(xué)生有足夠的訓(xùn)練,同時(shí)對(duì)較差學(xué)生又是鞏固,達(dá)到分層次教學(xué)的目的練習(xí):為測(cè)量松樹AB 的高度,一個(gè)人站在距松樹15 米的E 處,測(cè)得仰角ACD=52° ,已知人的高度為1.72 米,求樹高 (精確到 0.01 米 )要求學(xué)生根據(jù)題意能畫圖,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,利用解直角三角形的知識(shí)來解決它(四 )總結(jié)與擴(kuò)展請(qǐng)學(xué)生總結(jié):本節(jié)課通過兩個(gè)例題的講解,要求同學(xué)們會(huì)將某些實(shí)際問題轉(zhuǎn)化為解直角三角形問題去解決;今后,我們要善于用數(shù)學(xué)知識(shí)解決實(shí)際問題作業(yè)

14、必做教科書 P92: 3、 4設(shè)計(jì)選做教科書 P93: 7教學(xué)反思教學(xué)時(shí)間課題解直三角形應(yīng)用(三)課型新授課教學(xué)目知識(shí)使學(xué)生會(huì)把實(shí)際問題轉(zhuǎn)化為解直角三角形問題,從而會(huì)把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題來解和決能力過程逐步培養(yǎng)學(xué)生分析問題、解決問題的能力和方法情感滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的觀點(diǎn),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)標(biāo)態(tài)度價(jià)值觀要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形元素之間的關(guān)系,從而教學(xué)重點(diǎn)利用所學(xué)知識(shí)把實(shí)際問題解決要求學(xué)生善于將某些實(shí)際問題中的數(shù)量關(guān)系,歸結(jié)為直角三角形中元素之間的關(guān)系,從教學(xué)難點(diǎn)而利用所學(xué)知識(shí)把實(shí)際問題解決教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課堂教學(xué)程序設(shè)

15、計(jì)設(shè)計(jì)意圖1導(dǎo)入新課上節(jié)課我們解決的實(shí)際問題是應(yīng)用正弦及余弦解直角三角形,在實(shí)際問題中有時(shí)還經(jīng)常應(yīng)用正切和余切來解直角三角形,從而使問題得到解決2例題分析例 1如圖 6-21,廠房屋頂人字架(等腰三角形 )的跨度為10 米, A-26°,求中柱 BC(C 為底邊中點(diǎn) ) 和上弦 AB 的長 (精確到 0.01 米 )分析:上圖是本題的示意圖,同學(xué)們對(duì)照?qǐng)D形,根據(jù)題意思考題目中的每句話對(duì)應(yīng)圖中的哪個(gè)角或邊,本題已知什么,求什么?由題意知, ABC 為直角三角形, ACB=90° , A=26°, AC=5 米,可利用解 Rt ABC 的方法求出 BC 和 AB 學(xué)生

16、在把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題后,大部分學(xué)生可自行完成例題小結(jié):求出中柱 BC 的長為 2.44 米后,我們也可以利用正弦計(jì)算上弦AB 的長。如果在引導(dǎo)學(xué)生討論后小結(jié),效果會(huì)更好,不僅使學(xué)生掌握選何關(guān)系式,更重要的是知道為什么選這個(gè)關(guān)系式,以培養(yǎng)學(xué)生分析問題、解決問題的能力及計(jì)算能力,形成良好的學(xué)習(xí)習(xí)慣另外,本題是把解等腰三角形的問題轉(zhuǎn)化為直角三角形的問題,滲透了轉(zhuǎn)化的數(shù)學(xué)思想例 2如圖,一艘海輪位于燈塔P 的北偏東65 0 方向,距離燈塔 80 海里的 A 處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P 的南東 34 0 方向上的 B 處。這時(shí),海輪所在的B處距離燈塔P有多遠(yuǎn)(精確到0.01海里

17、)?065P034AB引導(dǎo)學(xué)生根據(jù)示意圖,說明本題已知什么,求什么,利用哪個(gè)三角形來求解,用正弦、余弦、正切、余切中的哪一種解較為簡便?3 鞏固練習(xí)為測(cè)量松樹 AB 的高度,一個(gè)人站在距松樹 15 米的 E 處,測(cè)得仰角 ACD=52° ,已知人的高度是 1.72 米,求樹高 (精確到 0.01 米 )首先請(qǐng)學(xué)生結(jié)合題意畫幾何圖形,并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題RtACD 中, D=Rt , ACD=52°, CD=BE=15 米, CE=DB=1.72 米,求 AB ?(三 )總結(jié)與擴(kuò)展請(qǐng)學(xué)生總結(jié):通過學(xué)習(xí)兩個(gè)例題,初步學(xué)會(huì)把一些實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過解直角三角形來解決

18、,具體說,本節(jié)課通過讓學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,利用正切或余切解直角三角形,從而把問題解決本課涉及到一種重要教學(xué)思想:轉(zhuǎn)化思想作業(yè)必做教科書 P92: 5設(shè)計(jì)選做教科書 P92: 6教學(xué)反思教學(xué)時(shí)間課題解直三角形應(yīng)用(四)課型新授課教學(xué)知識(shí)和能力過程和使學(xué)生懂得什么是橫斷面圖,能把一些較復(fù)雜的圖形轉(zhuǎn)化為解直角三角形的問題逐步培養(yǎng)學(xué)生分析問題、解決問題的能力目方法情感培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);滲透轉(zhuǎn)化思想;滲透數(shù)學(xué)來源于實(shí)踐又作用于實(shí)踐的觀點(diǎn)標(biāo)態(tài)度價(jià)值觀教學(xué)重點(diǎn)教學(xué)難點(diǎn)把等腰梯形轉(zhuǎn)化為解直角三角形問題;如何添作適當(dāng)?shù)妮o助線教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課堂教學(xué)程序設(shè)計(jì)設(shè)計(jì)意圖1出示已準(zhǔn)備的

19、泥燕尾槽, 讓學(xué)生有感視印象, 將其橫向垂直于燕尾槽的平面切割,得橫截面,請(qǐng)學(xué)生通過觀察,認(rèn)識(shí)到這是一個(gè)等腰梯形,并結(jié)合圖形,向?qū)W生介紹一些專用術(shù)語,使學(xué)生知道,圖中燕尾角對(duì)應(yīng)哪一個(gè)角,外口、內(nèi)口和深度對(duì)應(yīng)哪一條線段這一介紹,使學(xué)生對(duì)本節(jié)課內(nèi)容很感興趣,激發(fā)了學(xué)生的學(xué)習(xí)熱情2例題例燕尾槽的橫斷面是等腰梯形,圖 6-26 是一燕尾槽的橫斷面,其中燕尾角B 是 55°,外口寬AD是 180mm ,燕尾槽的深度是70mm,求它的里口寬BC( 精確到 1mm)分析: (1) 引導(dǎo)學(xué)生將上述問題轉(zhuǎn)化為數(shù)學(xué)問題;等腰梯形ABCD 中,上底 AD=180mm ,高 AE=70mm , B=55&#

20、176;,求下底 BC(2)讓學(xué)生展開討論,因?yàn)樯瞎?jié)課通過做等腰三角形的高把其分割為直角三角形,從而利用解直角三角形的知識(shí)來求解學(xué)生對(duì)這一轉(zhuǎn)化有所了解因此,學(xué)生經(jīng)互相討論,完全可以解決這一問題例題小結(jié):遇到有關(guān)等腰梯形的問題,應(yīng)考慮如何添加輔助線,將其轉(zhuǎn)化為直角三角形和矩形的組合圖形,從而把求等腰梯形的下底的問題轉(zhuǎn)化成解直角三角形的問題3鞏固練習(xí)如圖 6-27,在離地面高度5 米處引拉線固定電線桿,拉線和地面成60°角, 求拉線 AC 的長以及拉線下端點(diǎn)A 與桿底 D 的距離 AD( 精確到 0.01 米 )分析: (1)請(qǐng)學(xué)生審題: 因?yàn)殡娋€桿與地面應(yīng)是垂直的,那么圖 6-27 中

21、 ACD 是直角三角形 其中 CD=5m , CAD=60° ,求 AD 、AC 的長(2)學(xué)生運(yùn)用已有知識(shí)獨(dú)立解決此題教師巡視之后講評(píng)(三 )小結(jié)請(qǐng)學(xué)生作小結(jié),教師補(bǔ)充本節(jié)課教學(xué)內(nèi)容仍是解直角三角形,但問題已是處理一些實(shí)際應(yīng)用題,在這些問題中,有較多的專業(yè)術(shù)語,關(guān)鍵是要分清每一術(shù)語是指哪個(gè)元素,再看是否放在同一直角三角形中,這時(shí)要靈活,必要時(shí)還要作輔助線,再把問題放在直角三角形中解決在用三角函數(shù)時(shí),要正確判斷邊角關(guān)系作業(yè)必做教科書 P93: 9設(shè)計(jì)選做教科書 P93: 10教學(xué)反思教學(xué)時(shí)間課題解直三角形應(yīng)用(五)課型新授課知識(shí)鞏固直角三角形中銳角的三角函數(shù),學(xué)會(huì)解關(guān)于坡度角和有關(guān)角

22、度的問題教和能力學(xué)過程逐步培養(yǎng)學(xué)生分析問題解決問題的能力,進(jìn)一步滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法和目方法情感培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí);滲透數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辯證唯物主義觀標(biāo)態(tài)度點(diǎn)價(jià)值觀教學(xué)重點(diǎn)教學(xué)難點(diǎn)能熟練運(yùn)用有關(guān)三角函數(shù)知識(shí)解決實(shí)際問題教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課堂教學(xué)程序設(shè)計(jì)設(shè)計(jì)意圖1探究活動(dòng)一教師出示投影片,出示例題例 1如圖 6-29,在山坡上種樹, 要求株距 (相鄰兩樹間的水平距離)是 5.5m,測(cè)得斜坡的傾斜角是24°,求斜坡上相鄰兩樹的坡面距離是多少(精確到 0.1m) 分析: 1例題中出現(xiàn)許多術(shù)語株距,傾斜角,這些概念學(xué)生未接觸過,比較生疏,而株距概

23、念又是學(xué)生易記錯(cuò)之處,因此教師最好準(zhǔn)備教具:用木板釘成一斜坡,再在斜坡上釘幾個(gè)鐵釘,利用這種直觀教具更容易說明術(shù)語,符合學(xué)生的思維特點(diǎn)2引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題畫出圖形(上圖 6-29(2) 已知:Rt ABC 中, C=90°, AC=5.5 , A=24°,求 AB 3學(xué)生運(yùn)用解直角三角形知識(shí)完全可以獨(dú)立解決例 1教師可請(qǐng)一名同學(xué)上黑板做,其余同學(xué)在練習(xí)本上做,教師巡視答:斜坡上相鄰兩樹間的坡面距離約是6.0 米教師引導(dǎo)學(xué)生評(píng)價(jià)黑板上的解題過程,做到全體學(xué)生都掌握2探究活動(dòng)二例 2 如圖 6-30,沿 AC 方向開山修渠, 為了加快施工速度, 要從小山的另一邊同

24、時(shí)施工,從 AC 上的一點(diǎn) B 取 ABD=140° ,BD=52cm , D=50°,那么開挖點(diǎn) E 離 D多遠(yuǎn) ( 精確到 0.1m) ,正好能使 A 、 C、 E 成一條直線?這是實(shí)際施工中經(jīng)常遇到的問題應(yīng)首先引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題由題目的已知條件,D=50°, ABD=140° ,BD=520 米,求 DE 為多少時(shí), A 、C、E 在一條直線上。學(xué)生觀察圖形,不難發(fā)現(xiàn), E=90°,這樣此題就轉(zhuǎn)化為解直角三角形的問題了,全班學(xué)生應(yīng)該能獨(dú)立準(zhǔn)確地完成解:要使 A 、 C、 E 在同一直線上,則ABD 是 BDE 的一個(gè)外角 B

25、ED= ABD- D=90°DE=BD· cosD=520 ×0.6428=334.256 334.3(m) 答:開挖點(diǎn) E 離 D334.3 米,正好能使A 、 C、E 成一直線,提到角度問題,初一教材曾提到過方向角,但應(yīng)用較少因此本節(jié)課很有必要補(bǔ)充一道涉及方向角的實(shí)際應(yīng)用問題,出示投影片練習(xí) P95練習(xí) 1, 2。補(bǔ)充題:正午10 點(diǎn)整,一漁輪在小島O 的北偏東 30°方向,距離等于10 海里的 A處,正以每小時(shí)10 海里的速度向南偏東60°方向航行那么漁輪到達(dá)小島O 的正東方向是什么時(shí)間?(精確到 1 分 )學(xué)生雖然在初一接觸過方向角,但

26、應(yīng)用很少,所以學(xué)生在解決這個(gè)問題時(shí),可能出現(xiàn)不會(huì)畫圖,無法將實(shí)際問題轉(zhuǎn)化為幾何問題的情況因此教師在學(xué)生獨(dú)自嘗試之后應(yīng)加以引導(dǎo):(1)確定小島O 點(diǎn); (2)畫出 10 時(shí)船的位置A ; (3)小船在 A 點(diǎn)向南偏東60°航行,到達(dá) O 的正東方向位置在哪?設(shè)為 B; (4) 結(jié)合圖形引導(dǎo)學(xué)生加以分析,可以解決這一問題此題的解答過程非常簡單,對(duì)于程度較好的班級(jí)可以口答,以節(jié)省時(shí)間補(bǔ)充一道有關(guān)方向角的應(yīng)用問題,達(dá)到熟練程度對(duì)于程度一般的班級(jí)可以不必再補(bǔ)充,只需理解前三例即可補(bǔ)充題:如圖6-32,海島 A 的周圍 8 海里內(nèi)有暗礁,魚船跟蹤魚群由西向東航行,在點(diǎn) B 處測(cè)得海島A 位于北偏

27、東60°,航行 12 海里到達(dá)點(diǎn)C 處,又測(cè)得海島A 位于北偏東30°,如果魚船不改變航向繼續(xù)向東航行有沒有觸礁的危險(xiǎn)?如果時(shí)間允許,教師可組織學(xué)生探討此題,以加深對(duì)方向角的運(yùn)用同時(shí),學(xué)生對(duì)這種問題也非常感興趣,教師可通過此題創(chuàng)設(shè)良好的課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣若時(shí)間不夠,此題可作為思考題請(qǐng)學(xué)生課后思考(三 )小結(jié)與擴(kuò)展教師請(qǐng)學(xué)生總結(jié):在這類實(shí)際應(yīng)用題中,都是直接或間接地把問題放在直角三角形中,雖然有一些專業(yè)術(shù)語,但要明確各術(shù)語指的什么元素,要善于發(fā)現(xiàn)直角三角形,用三角 函數(shù)等知識(shí)解決問題利用解直角三角形的知識(shí)解決實(shí)際問題的一般過程是:( 1)將實(shí)際問題抽象為數(shù)學(xué)問題(畫

28、出平面圖形,轉(zhuǎn)化為解直角三角形的問題);( 2)根據(jù)條件的特點(diǎn),適當(dāng)選用銳角三角函數(shù)等去解直角三角形;( 3)得到數(shù)學(xué)問題的答案;( 4)得到實(shí)際問題的答案。作業(yè)必做教科書 P93: 8設(shè)計(jì)選做練習(xí)冊(cè)教學(xué)反思教學(xué)時(shí)間課題解直三角形應(yīng)用課型新授課知識(shí)鞏固用三角函數(shù)有關(guān)知識(shí)解決問題,學(xué)會(huì)解決坡度問題教和能力學(xué)過程逐步培養(yǎng)學(xué)生分析問題、解決問題的能力;滲透數(shù)形結(jié)合的數(shù)學(xué)思想和方法和目方法情感培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí),滲透理論聯(lián)系實(shí)際的觀點(diǎn)標(biāo)態(tài)度價(jià)值觀教學(xué)重點(diǎn)教學(xué)難點(diǎn)解決有關(guān)坡度的實(shí)際問題理解坡度的有關(guān)術(shù)語教學(xué)準(zhǔn)備教師多媒體課件學(xué)生“五個(gè)一”課堂教學(xué)程序設(shè)計(jì)設(shè)計(jì)意圖1創(chuàng)設(shè)情境,導(dǎo)入新課例同學(xué)們,如果你是修

29、建三峽大壩的工程師,現(xiàn)在有這樣一個(gè)問題請(qǐng)你解決:如圖6-33水庫大壩的橫斷面是梯形,壩頂寬 6m,壩高 23m,斜坡 AB 的坡度 i=1 3,斜坡 CD 的坡度 i=1 2.5,求斜坡 AB 的坡面角 ,壩底寬 AD 和斜坡AB 的長 (精確到 0.1m) 同學(xué)們因?yàn)槟惴Q他們?yōu)楣こ處煻湴粒瑵M腔熱情,但一見問題又手足失措,因?yàn)檫B題中的術(shù)語坡度、坡角等他們都不清楚這時(shí),教師應(yīng)根據(jù)學(xué)生想學(xué)的心情,及時(shí)點(diǎn)撥通過前面例題的教學(xué),學(xué)生已基本了解解實(shí)際應(yīng)用題的方法,會(huì)將實(shí)際問題抽象為幾何問題加以解決但此題中提到的坡度與坡角的概念對(duì)學(xué)生來說比較生疏,同時(shí)這兩個(gè)概念在實(shí)際生產(chǎn)、生活中又有十分重要的應(yīng)用,因此

30、本節(jié)課關(guān)鍵是使學(xué)生理解坡度與坡角的意義介紹概念坡度與坡角結(jié)合圖 6-34,教師講述坡度概念,并板書:坡面的鉛直高度h 和水h平寬度 l 的比叫做坡度(或叫做坡比),一般用i 表示。即l ,把坡面與水平面的夾角 叫做坡角引導(dǎo)學(xué)生結(jié)合圖形思考,坡度i 與坡角 之間具有什么關(guān)系?h答: i l tan這一關(guān)系在實(shí)際問題中經(jīng)常用到,教師不妨設(shè)置練習(xí),加以鞏固練習(xí) (1) 一段坡面的坡角為60°,則坡度i=_ ;_,坡角_度為了加深對(duì)坡度與坡角的理解,培養(yǎng)學(xué)生空間想象力,教師還可以提問:(1)坡面鉛直高度一定,其坡角、坡度和坡面水平寬度有什么關(guān)系?舉例說明(2)坡面水平寬度一定,鉛直高度與坡度有何關(guān)系,舉例說明答: (1)如圖,鉛直高度AB 一定,水平寬度BC 增加, 將變小,坡度減小,AB因?yàn)閠an BC , AB 不變, tan隨 BC 增大而減小(2)與 (1) 相反,水平寬度BC 不變, 將隨鉛直高度增大而增大,tanAB也隨之增大,因?yàn)閠an= BC不變時(shí), tan隨AB的增大而增大2講授新課引導(dǎo)學(xué)生分析例題,圖中ABCD是梯形,若BE AD , CF AD ,梯形就被分割成RtABE ,矩形 BEFC 和 Rt CFD,AD=AE+EF+FD ,AE 、DF 可在 ABE 和 CDF 中通過坡度求出, E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論