251平面幾何中的向量的方法_第1頁
251平面幾何中的向量的方法_第2頁
251平面幾何中的向量的方法_第3頁
251平面幾何中的向量的方法_第4頁
251平面幾何中的向量的方法_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、平面幾何中的向量的方法復習向量數量積的坐標表示向量模的計算平面內兩點間的距離公式向量垂直的充要條件綜合方法不使用其他工具,對幾何元素及其關系直接進行討論;解析方法以數(代數式)和數(代數式)的運算為工具,對幾何元素及其關系進行討論;向量方法以向量和向量的運算為工具,對幾何元素及其關系進行討論;分析方法研究幾何可以采用不同的方法研究幾何可以采用不同的方法例1 平行四邊形是表示向量加法與減法的幾何模型?,鄰邊長度之間的關系嗎形對角線的長度與兩條你能發(fā)現平行四邊adabbdadabacbadc分析baadab,令,babadbac2222 ,baadab涉及長度問題常??紤]向量的數量積badc解解

2、babaacacac2bbabbaaa 222bbaa 2222bbaabd+ 2 2222222adabbdacba平行四邊形兩條對角線的平方和等于兩條鄰邊平方和的兩倍“三部曲”1.建立平面幾何與向量的聯系,用向量表示問題中涉及的幾何元素,將平面幾何問題轉化為向量問題;2.通過向量運算,研究幾元素之間的關系,如距離、夾角等問題;3.把運算結果“翻譯”成幾何關系adcbefrt例2 如圖,連接abcd的一個頂點至ad、dc邊的中點e、f,be、bf分別與ac交于r、t兩點,你能發(fā)現ar、rt、tc之間的關系嗎?課件演示分析分析:由于ar,rt,tc在ac上,只要判斷ar,rt,tc與ac的關系

3、.,之間的關系即可判斷acatarad與解:batrbaacataradab則設,“轉化轉化”“運算運算”rnn, bar設ba21aeabebrmmebmer,21 ba設eraear eraear babr2121madcbefrt利用實數與向量的積證明共線、平行、長度問題babba2121mn0ba21mnmn0210mnmn31 mnacatacar32 ,31“翻譯翻譯”tcrtaradcbefrt利用向量的數量積可解決長度、角度、垂直等問題求證:直徑上的圓周角為直角。已知:如圖, ac為 o的一條直徑,abc是圓周角求證: abc=90abco證明證明:則設,baobao 0 22

4、babababcabbabaaba且,bcocab abbc 即abc=90如圖如圖,ad、be、cf是是abc的三條高的三條高.求證:求證:ad、be、cf相交于一點相交于一點.fabcdeabcdeh分析:分析:設ad與be交于h,只要證chab,即高cf與ch重合,即cf過點h只須證chab 由此可設abcbcapch如何證 ?0 abp利用adbc,beca,對應向量垂直。0apab0apb)(bcha00)(bpabbpacabh0)(0bapbpapbachbach0解:解:設ad與be交于h,abcbcapch0(apab0ap)bbcha0bpab0bp)(acabh0b)(ap0bpapbachbach0即高cf與ch重合,cf過點h,ad、be、cf交于一點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論